久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

等比數(shù)列的證明

時間:2023-04-29 19:06:59 證明范文 我要投稿
  • 相關(guān)推薦

等比數(shù)列的證明

等比數(shù)列的證明

數(shù)列an前n項和為Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 證明

等比數(shù)列的證明

(1)(Sn/n)是等比數(shù)列

(2) S(n+1)=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S[(n+1)/(n+1)]/[Sn/n]=2

S1/1=A1=1

所以Sn/n是以2為公比1為首項的等比數(shù)列

2、由1有Sn/n是以2為公比1為首項的等比數(shù)列

所以Sn/n的通項公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

=n2^(n-1)-(n-1)2^(n-2)

=n*2*2^(n-2)-(n-1)2^(n-2)

=[2n-(n-1)]*2^(n-2)

=(n+1)2^(n-2)

=(n+1)*2^n/2^2

=(n+1)2^n/4

=S(n+1)/4

所以有S(n+1)=4An

a(n)-a(n-1)=2(n-1)

上n-1個式子相加得到:

an-a1=2+4+6+8+.....2(n-1)

右邊是等差數(shù)列,且和=[2+2(n-1)](n-1)/2=n(n-1)

所以:

an-2=n^2-n

an=n^2-n+2

4、

已知數(shù)列{3*2的N此方},求證是等比數(shù)列

根據(jù)題意,數(shù)列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...

為了驗證它是等比數(shù)列只需要比較任何一項和它相鄰項的比值是一個不依賴項次的固定比值就可以了.

所以第n項和第n+1項分別是3*2^n和3*2^(n+1),相比之后有:

[3*2^(n+1)]/(3*2^n)=2

因為比值是2,不依賴n的選擇,所以得到結(jié)論.

5

數(shù)列an前n項和為Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 證明

(1)(Sn/n)是等比數(shù)列

(2) S(n+1)=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S[(n+1)/(n+1)]/[Sn/n]=2

S1/1=A1=1

所以Sn/n是以2為公比1為首項的等比數(shù)列

2、由1有Sn/n是以2為公比1為首項的等比數(shù)列

所以Sn/n的通項公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

【等比數(shù)列的證明】相關(guān)文章:

無窮遞縮等比數(shù)列04-29

等比數(shù)列中的創(chuàng)新題04-30

學(xué)習(xí)等比數(shù)列時常見的誤區(qū)04-30

等比數(shù)列的教學(xué)反思(通用7篇)05-27

說課案例:如何上好§3.4等比數(shù)列05-02

《等比數(shù)列的前n項和》教學(xué)反思04-30

單位證明范文_證明05-15

離職證明離職證明01-22

小孩改名證明范文_證明05-23

證明04-29