- 相關(guān)推薦
平行四邊形證明題
平行四邊形證明題由條件可知,這是通過三角形的中位線定理來判斷FG平行DA,同理HE平行DA,GE平行CB,F(xiàn)H平行CB!~
我這一化解,樓主應(yīng)該明白了吧!~
希望樓主采納,謝謝~!不懂再問!!!
此題關(guān)鍵就是對(duì)于三角形的中位線定理熟不!~!~·
已知:F,G是△CDA的中點(diǎn),所以FG是△CDA的中位線,所以FG平行DA
同理HE是△BAD的中位線,所以HE平行DA,所以FG平行HE
同理可得:FH平行GE!~
即四邊形FGEH是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形
2
證明:∵E,F(xiàn),G,H分別是AB,CD,AC,BD的中點(diǎn)
∴FG//AD,HE//AD,F(xiàn)H//BC,EG//BC
∴FG//HE,F(xiàn)H//EG
∴四邊形EGFH是平行四邊形
3.
理由:連接一條對(duì)角線,AC吧。
∵AD平行BC,AB平行DC(平行四邊形的性質(zhì))
∴∠DAC=∠ACB,∠BAC=∠DCA
在△ABC和△DAC中,
∠DAC=∠ACB
AC=CA
∠BAC=∠DCA
所以,△ABC全等于△DAC(A.S.A)
所以,AB=DA,AD=BC
證明:∵四邊形ABCD為平行四邊形;
∴DC‖AB;
∴∠EAF=∠DEA
∵AE,CF,分別是∠DAB、∠BCD的平分線;
∴∠DAE=∠EAF;∠ECF=∠BCF;
∴∠EAF=∠CFB;
∴AE‖CF;
∵EC‖AF
∴四邊形AFCE是平行四邊形
4
1.畫個(gè)圓,里面畫個(gè)矩形2.假設(shè)圓里面的是平行四邊形3.因?yàn)閷?duì)邊平行,所以4個(gè)角相等4.平行四邊四個(gè)角之和等于360,5.360除以4等于906.所以圓內(nèi)平行四邊形為矩形..
3判定(前提:在同一平面內(nèi))(1)兩組對(duì)邊分別相等的四邊形是平行四邊形;
(2)一組對(duì)邊平行且相等的四邊形是平行四邊形; (3)兩組對(duì)邊分別平行的四邊形是平行四邊形; (4)兩條對(duì)角線互相平分的四邊形是平行四邊形 (5)兩組對(duì)角分別相等的四邊形為平行四邊形 (注:僅以上五條為平行四邊形的判定定理,并非所有真命題都為判定定理,希望各位讀者不要隨意更改。) (第五條對(duì),如果對(duì)角相等,那么鄰角之和的二倍等于360°,那么鄰角之和等與180°,那么對(duì)邊平行,(兩組對(duì)邊分別平行的四邊形是平行四邊形)所以這個(gè)四邊形是平行四邊形) 編輯本段性質(zhì)(矩形、菱形、正方形都是特殊的平行四邊形。) (1)平行四邊形對(duì)邊平行且相等。 (2)平行四邊形兩條對(duì)角線互相平分。 (3)平行四邊形的對(duì)角相等,兩鄰角互補(bǔ)。 (4)連接任意四邊形各邊的中點(diǎn)所得圖形是平行四邊形。(推論) (5)平行四邊形的面積等于底和高的積。(可視為矩形) (6)過平行四邊形對(duì)角線交點(diǎn)的直線,將平行四邊形分成全等的兩部分圖形。 (7)對(duì)稱中心是兩對(duì)角線的交點(diǎn)。
性質(zhì)9(8)矩形 菱形是軸對(duì)稱圖形。 (9)平行四邊形ABCD中(如圖)E為AB的中點(diǎn),則AC和DE互相三等分, 一般地,若E為AB上靠近A的n等分點(diǎn),則AC和DE互相(n+1)等分。 *注:正方形,矩形以及菱形也是一種特殊的平行四邊形。 (10)平行四邊形ABCD中,AC、BD是平行四邊形ABCD的對(duì)角線,則各四邊的平方和等于對(duì)角線的平方和。 (11)平行四邊形對(duì)角線把平行四邊形面積分成四等分。 (12) 平行四邊形是中心對(duì)稱圖形,但不是軸對(duì)稱圖形。 (13)平行四邊形中,兩條在不同對(duì)邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。 (14)平行四邊形中,一個(gè)角的頂點(diǎn)向他對(duì)角的兩邊所做的高,與這個(gè)角的兩邊組成的夾角相等。 編輯本段平行四邊形中常用輔助線的添法一、連接對(duì)角線或平移對(duì)角線。 二、過頂點(diǎn)作對(duì)邊的垂線構(gòu)成直角三角形。
【平行四邊形證明題】相關(guān)文章:
幾何證明題04-29
初中幾何證明題的入門的論文04-27
高中數(shù)學(xué)證明題04-30
攻克考研數(shù)學(xué)證明題思路總結(jié)04-28
完勝考研數(shù)學(xué)證明題思路總結(jié)04-28
2012考研數(shù)學(xué) 攻克證明題思路總結(jié)04-28