久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

余割函數(shù)初中數(shù)學公式

學人智庫 時間:2018-01-15 我要投稿
【www.dameics.com - 學人智庫】

  余割函數(shù)要領(lǐng):對于任意一個實數(shù)x,都對應著唯一的角(弧度制中等于這個實數(shù)),而這個角又對應著唯一確定的余割值cscx與它對應,按照這個對應法則建立的函數(shù)稱為余割函數(shù)。

  余割函數(shù)

  記作f(x)=cscx

  f(x)=cscx=1/sinx

  余割函數(shù)的性質(zhì)

  1、定義域:{x|x≠kπ,k∈Z}

  2、值域:{y|y≤—1或y≥1}

  3、奇偶性:奇函數(shù)

  4、周期性:最小正周期為2π

  5、圖像:

  圖像漸近線為:x=kπ ,k∈Z 余割函數(shù)與正弦函數(shù)互為倒數(shù)

  溫馨提示:上面的初中數(shù)學余割函數(shù)公式,大家了解即可。

  初中數(shù)學正方形定理公式

  關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學們很好的掌握下面的內(nèi)容。

  正方形定理公式

  正方形的特征:

 、僬叫蔚乃倪呄嗟;

  ②正方形的四個角都是直角;

 、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;

  正方形的判定:

  ①有一個角是直角的菱形是正方形;

 、谟幸唤M鄰邊相等的矩形是正方形。

  希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。

  初中數(shù)學平行四邊形定理公式

  同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內(nèi)容講解。

  平行四邊形

  平行四邊形的性質(zhì):

 、倨叫兴倪呅蔚膶呄嗟;

 、谄叫兴倪呅蔚膶窍嗟;

 、燮叫兴倪呅蔚膶蔷互相平分;

  平行四邊形的判定:

 、賰山M對角分別相等的四邊形是平行四邊形;

 、趦山M對邊分別相等的四邊形是平行四邊形;

 、蹖蔷互相平分的四邊形是平行四邊形;

 、芤唤M對邊平行且相等的四邊形是平行四邊形。

  上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。

  初中數(shù)學直角三角形定理公式

  下面是對直角三角形定理公式的內(nèi)容講解,希望給同學們的學習很好的幫助。

  直角三角形的性質(zhì):

 、僦苯侨切蔚膬蓚銳角互為余角;

 、谥苯侨切涡边吷系闹芯等于斜邊的一半;

 、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚;

  ④直角三角形中30度

  角所對的直角邊等于斜邊的一半;

  直角三角形的判定:

 、儆袃蓚角互余的三角形是直角三角形;

  ②如果三角形的三邊長a、b 、c有下面關(guān)系a^2+b^2=c^2

  ,那么這個三角形是直角三角形(勾股定理的逆定理)。

  以上對數(shù)學直角三角形定理公式的內(nèi)容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學等腰三角形的性質(zhì)定理公式

  下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學習,希望同學們認真看看。

  等腰三角形的性質(zhì):

 、俚妊切蔚膬蓚底角相等;

 、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)

  上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。

  初中數(shù)學三角形定理公式

  對于三角形定理公式的學習,我們做下面的內(nèi)容講解學習哦。

  三角形

  三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;

  三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;

  三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;

  三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;

  三角形的三條角平分線交于一點(內(nèi)心);

  三角形的三邊的垂直平分線交于一點(外心);

  三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;

  以上對三角形定理公式的內(nèi)容講解學習,希望同學們都能很好的掌握,并在考試中取得很好的成績哦。

[余割函數(shù)初中數(shù)學公式]