常用公式
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (注:根號下(x1-x2)與(y1-y2)的平方和)
5.求兩個一次函數(shù)式圖像交點坐標(biāo):解兩函數(shù)式
兩個一次函數(shù) y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 將解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 兩式任一式 得到y(tǒng)=y0 則(x0,y0)即為 y1=k1x+b1 與 y2=k2x+b2 交點坐標(biāo)
6.求任意2點所連線段的中點坐標(biāo):[(x1+x2)/2,(y1+y2)/2]
7.求任意2點的連線的一次函數(shù)解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母為0,則分子為0)
x y
+ + 在第一象限
+ - 在第四象限
- + 在第二象限
- - 在第三象限
8.若兩條直線y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2
9.如兩條直線y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.
y=k(x-n)+b就是向右平移n個單位
y=k(x+n)+b就是向左平移n個單位
口訣:右減左加(對于y=kx+b來說,只改變k)
y=kx+b+n就是向上平移n個單位
y=kx+b-n就是向下平移n個單位
口訣:上加下減(對于y=kx+b來說,只改變b)
[初中數(shù)學(xué)函數(shù)之常用公式]