- 相關(guān)推薦
Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate. It follows that the solution converges to the solution of a nonlinear diffusion problem, as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.
作 者: Robert EYMARD Danielle HILHORST Hideki MURAKAWA Michal OLECH 作者單位: Robert EYMARD(Université Paris-Est, 77454 Marne-la-Vallée Cedex 2, France)Danielle HILHORST(Laboratoire de Mathématiques, CNRS and Université de Paris-Sud 11, 91405 Orsay Cédex, France)
Hideki MURAKAWA(Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan)
Michal OLECH(Instytut Matematyczny Uniwersytctu Wroclawskiego, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Polska; Laboratoire de Mathématiques, CNRS Université de Paris-Sud, 91405 Orsay Cédex, France)
刊 名: 數(shù)學(xué)年刊B輯(英文版) ISTIC SCI 英文刊名: CHINESE ANNALS OF MATHEMATICS,SERIES B 年,卷(期): 2010 31(5) 分類號(hào): O1 關(guān)鍵詞: Instantaneous reaction limit Mass-action kinetics Finite volume methods Convergence of approximate solutions Discrete a priori estimates Kolmogorov's theorem