久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

數(shù)據(jù)挖掘技術(shù)在會(huì)計(jì)管理與分析的性研究分析論文

時(shí)間:2023-04-28 17:42:06 管理論文 我要投稿
  • 相關(guān)推薦

數(shù)據(jù)挖掘技術(shù)在會(huì)計(jì)管理與分析的實(shí)用性研究分析論文

  隨著會(huì)計(jì)現(xiàn)代化的發(fā)展,會(huì)計(jì)越來(lái)越多的運(yùn)用計(jì)算機(jī)技術(shù)的拓展。

數(shù)據(jù)挖掘技術(shù)在會(huì)計(jì)管理與分析的實(shí)用性研究分析論文

  一、數(shù)據(jù)挖掘

  數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢(shì)和模式的過(guò)程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫(kù)管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛在有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢(shì)和模式的過(guò)程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫(kù)管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛存有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。

  二、數(shù)據(jù)挖掘的現(xiàn)代最新方法介紹

  常用的數(shù)據(jù)挖掘方法主要有決策樹(Decision Tree)、遺傳算法(Genetic Algorithms)、關(guān)聯(lián)分析(Association Analysis).聚類分析(C~smr Analysis)、序列模式分析(Sequential Pattern)以及神經(jīng)網(wǎng)絡(luò)(Neural Networks)等。

  三、數(shù)據(jù)挖掘的實(shí)際應(yīng)用

  由于數(shù)據(jù)挖掘市場(chǎng)還處于起步的階段,但是發(fā)展很快。在國(guó)外有一些著名的大公司對(duì)數(shù)據(jù)挖掘系統(tǒng)進(jìn)行了開發(fā)。

  1.Intelligent Miner這是IBM公司的數(shù)據(jù)挖掘產(chǎn)品,它提供了很多數(shù)據(jù)挖掘算法,包括關(guān)聯(lián)、分類、回歸、預(yù)測(cè)模型、偏離檢測(cè)、序列模式分析和聚類。有2個(gè)特點(diǎn):一是它的數(shù)據(jù)挖掘算法的可伸縮性;二是它與IBM/DB/2關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)緊密地結(jié)合在一起。

  2.EineSet是由SGI公司開發(fā)的,它也提供了多種數(shù)據(jù)挖掘方法,包括關(guān)聯(lián)分析和分類以及高級(jí)統(tǒng)計(jì)和可視化工具。特色是它具有的強(qiáng)大的圖形工具,包括規(guī)則可視化工具、樹可視化工具、地圖可視化工具和多維數(shù)據(jù)分散可視化工具,它們用于實(shí)現(xiàn)數(shù)據(jù)和數(shù)據(jù)挖掘結(jié)果的可視化。

  3.Clementine是由ISL公司開發(fā)的,它為終端用戶和開發(fā)者提供提供了一個(gè)集成的數(shù)據(jù)挖掘開發(fā)環(huán)境。

  4.DBMiner是由DBMiner Technology公司開發(fā)的,它提供多種數(shù)據(jù)挖掘算法,包括發(fā)現(xiàn)驅(qū)動(dòng)的OLAP分析、關(guān)聯(lián)、分類和聚類。特色是它的基于數(shù)據(jù)立方體的聯(lián)機(jī)分析挖掘,它包含多種有效的頻繁模式挖掘功能和集成的可視化分類方法

  四、數(shù)據(jù)挖掘與管理會(huì)計(jì)

  1.提供有力的決策支持

  面對(duì)日益激烈的競(jìng)爭(zhēng)環(huán)境,企業(yè)管理者對(duì)決策信息的需求也越來(lái)越高。管理會(huì)計(jì)作為企業(yè)決策支持系統(tǒng)的重要組成部分,提供更多、更有效的有用信息責(zé)無(wú)旁貸。因此,從海量數(shù)據(jù)中挖掘和尋求知識(shí)和信息,為決策提供有力支持成為管理會(huì)計(jì)師使用數(shù)據(jù)挖掘的強(qiáng)大動(dòng)力。例如,數(shù)據(jù)挖掘可以幫助企業(yè)加強(qiáng)成本管理,改進(jìn)產(chǎn)品和服務(wù)質(zhì)量,提高貨品銷量比率,設(shè)計(jì)更好的貨品運(yùn)輸與分銷策略,減少商業(yè)成本。

  2.贏得戰(zhàn)略競(jìng)爭(zhēng)優(yōu)勢(shì)的有力武器

  實(shí)踐證明數(shù)據(jù)挖掘不僅能明顯改善企業(yè)內(nèi)部流程,而且能夠從戰(zhàn)略的高度對(duì)企業(yè)的競(jìng)爭(zhēng)環(huán)境、市場(chǎng)、顧客和供應(yīng)商進(jìn)行分析,以獲得有價(jià)值的商業(yè)情報(bào),保持和提高企業(yè)持續(xù)競(jìng)爭(zhēng)優(yōu)勢(shì)。如,對(duì)顧客價(jià)值分析能夠?qū)槠髽I(yè)創(chuàng)造80%價(jià)值的20%的顧客區(qū)分出來(lái),對(duì)其提供更優(yōu)質(zhì)的服務(wù),以保持這部分顧客。

  3.預(yù)防和控制財(cái)務(wù)風(fēng)險(xiǎn)

  利用數(shù)據(jù)挖掘技術(shù)可以建立企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型。企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)的發(fā)生并非一蹴而就,而是一個(gè)積累的、漸進(jìn)的過(guò)程,通過(guò)建立財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型,可以隨時(shí)監(jiān)控企業(yè)財(cái)務(wù)狀況,防范財(cái)務(wù)危機(jī)的發(fā)生。另外,也可以利用數(shù)據(jù)挖掘技術(shù),對(duì)企業(yè)籌資和投資過(guò)程中的行為進(jìn)行監(jiān)控,防止惡意的商業(yè)欺詐行為,維護(hù)企業(yè)利益。尤其是在金融企業(yè),通過(guò)數(shù)據(jù)挖掘,可以解決銀行業(yè)面臨的如信用卡的惡意透支及可疑的信用卡交易等欺詐行為。根據(jù)SEC的報(bào)告,美國(guó)銀行、美國(guó)第一銀行、聯(lián)邦住房借貸抵押公司等數(shù)家銀行已采用了數(shù)據(jù)挖掘技術(shù)。

  五、數(shù)據(jù)挖掘在管理會(huì)計(jì)中的應(yīng)用

  1.作業(yè)成本和價(jià)值鏈分析

  作業(yè)成本法以其對(duì)成本的精確計(jì)算和對(duì)資源的充分利用引起了人們的極大興趣,但其復(fù)雜的操作使得很多管理者望而卻步。利用數(shù)據(jù)挖掘中的回歸分析、分類分析等方法能幫助管理會(huì)計(jì)師確定成本動(dòng)因,更加準(zhǔn)確計(jì)算成本。同時(shí),也可以通過(guò)分析作業(yè)與價(jià)值之間的關(guān)系,確定增值作業(yè)和非增值作業(yè),持續(xù)改進(jìn)和優(yōu)化企業(yè)價(jià)值鏈。在Thomas G,John J和Il-woon Kim的調(diào)查中,數(shù)據(jù)挖掘被用在作業(yè)成本管理中僅占3%。

  2.預(yù)測(cè)分析

  管理會(huì)計(jì)師在很多情況下需要對(duì)未來(lái)進(jìn)行預(yù)測(cè),而預(yù)測(cè)是建立在大量的歷史數(shù)據(jù)和適當(dāng)?shù)哪P突A(chǔ)上的。數(shù)據(jù)挖掘自動(dòng)在大型數(shù)據(jù)庫(kù)中尋找預(yù)測(cè)性信息,利用趨勢(shì)分析、時(shí)間序列分析等方法,建立對(duì)如銷售、成本、資金等的預(yù)測(cè)模型,科學(xué)準(zhǔn)確的預(yù)測(cè)企業(yè)各項(xiàng)指標(biāo),作為決策的依據(jù)。例如對(duì)市場(chǎng)調(diào)查數(shù)據(jù)的分析可以幫助預(yù)測(cè)銷售;根據(jù)歷史資料建立銷售預(yù)測(cè)模型等。

  3.投資決策分析

  投資決策分析本身就是一個(gè)非常復(fù)雜的過(guò)程,往往要借助一些工具和模型。數(shù)據(jù)挖掘技術(shù)提供了有效的工具。從公司的財(cái)務(wù)報(bào)告、宏觀的經(jīng)濟(jì)環(huán)境以及行業(yè)基本狀況等大量的數(shù)據(jù)資料中挖掘出與決策相關(guān)的實(shí)質(zhì)性的信息,保證投資決策的正確性和有效性。如利用時(shí)間序列分析模型預(yù)測(cè)股票價(jià)格進(jìn)行投資;用聯(lián)機(jī)分析處理技術(shù)分析公司的信用等級(jí),以預(yù)防投資風(fēng)險(xiǎn)等。

  4.產(chǎn)品和市場(chǎng)預(yù)測(cè)與分析

  品種優(yōu)化是選擇適當(dāng)?shù)漠a(chǎn)品組合以實(shí)現(xiàn)最大的利益的過(guò)程,這些利益可以是短期利潤(rùn),也可以是長(zhǎng)期市場(chǎng)占有率,還可以是構(gòu)建長(zhǎng)期客戶群及其綜合體。為了達(dá)到這些目標(biāo),管理會(huì)計(jì)師不僅僅需要價(jià)格和成本數(shù)據(jù)有時(shí)還需要知道替代品的情況,以及在某一市場(chǎng)段位上它們與原產(chǎn)品競(jìng)爭(zhēng)的狀況。另外企業(yè)也需要了解一個(gè)產(chǎn)品是如何刺激另一些產(chǎn)品的銷量的等等。例如,非盈利性產(chǎn)品本身是沒有利潤(rùn)可言的,但是,如果它帶來(lái)了可觀的客戶流量,并刺激了高利潤(rùn)產(chǎn)品的銷售,那么,這種產(chǎn)品就非常有利可圖,就應(yīng)該包括在產(chǎn)品清單中。這些信息可根據(jù)實(shí)際數(shù)據(jù),通過(guò)關(guān)聯(lián)分析等技術(shù)來(lái)得到。

  5.財(cái)務(wù)風(fēng)險(xiǎn)預(yù)測(cè)與評(píng)估

  管理會(huì)計(jì)師可以利用數(shù)據(jù)挖掘工具來(lái)評(píng)價(jià)企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),建立企業(yè)財(cái)務(wù)危機(jī)預(yù)警模型,進(jìn)行破產(chǎn)預(yù)測(cè)。破產(chǎn)預(yù)測(cè)或稱財(cái)務(wù)危機(jī)預(yù)警模型能夠幫助管理者及時(shí)了解企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),提前采取風(fēng)險(xiǎn)防范措施,避免破產(chǎn)。另外,破產(chǎn)預(yù)測(cè)模型還能幫助分析破產(chǎn)原因,對(duì)企業(yè)管理者意義重大。,數(shù)據(jù)挖掘技術(shù)包括多維判別式分析、邏輯回歸分析、遺傳算法、神經(jīng)網(wǎng)絡(luò)以及決策樹等方法在管理會(huì)計(jì)中得到了廣泛的應(yīng)用。

  六、結(jié)論

  數(shù)據(jù)挖掘是個(gè)嶄新的領(lǐng)域,對(duì)于數(shù)字和信息的處理是非?茖W(xué)和方便的,也是非常高效率和合理分析的非常好的工具,對(duì)于會(huì)計(jì)管理領(lǐng)域的應(yīng)用在國(guó)際上只是剛剛開始,相信隨著會(huì)計(jì)的國(guó)際化的接軌和計(jì)算機(jī)科學(xué)的進(jìn)步,在我國(guó)的會(huì)計(jì)領(lǐng)域中的數(shù)據(jù)挖掘理論會(huì)得到不斷的提升,在管理會(huì)計(jì)實(shí)際應(yīng)用中的數(shù)據(jù)挖掘也越來(lái)越多樣化和普及化。

【數(shù)據(jù)挖掘技術(shù)在會(huì)計(jì)管理與分析的性研究分析論文】相關(guān)文章:

軟件工程數(shù)據(jù)挖掘進(jìn)展分析論文04-27

基于數(shù)據(jù)挖掘技術(shù)的交通事故分析04-26

鉆井液的技術(shù)管理研究分析論文04-28

數(shù)據(jù)挖掘論文04-29

馬克威分析系統(tǒng)介紹(四)-數(shù)據(jù)挖掘05-02

小麥保護(hù)性耕作技術(shù)研究與分析05-02

基于決策樹的我國(guó)農(nóng)業(yè)數(shù)據(jù)挖掘分析05-01

地理作用和集聚演化:基于數(shù)據(jù)挖掘的分析04-29

地理作用和集聚演化:基于數(shù)據(jù)挖掘的分析05-02

GPS起算數(shù)據(jù)兼容性分析04-27