- 相關(guān)推薦
2015考研數(shù)學備考 高等數(shù)學重難點
一、函數(shù)、極限、連續(xù)部分:極限的運算法則、極限存在的準則(單調(diào)有界準則和夾逼準則)、未定式的極限、主要的等價無窮小、函數(shù)間斷點的判斷以及分類,還有閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(尤其是介值定理),這些知識點在歷年真題中出現(xiàn)的概率比較高,屬于重點內(nèi)容,但是很基礎(chǔ),不是難點,因此這部分內(nèi)容一定不要丟分。
二、微分學部分:主要是一元函數(shù)微分學和多元函數(shù)微分學,其中一元函數(shù)微分學是基礎(chǔ)亦是重點。
一元函數(shù)微分學,主要掌握連續(xù)性、可導性、可微性三者的關(guān)系,另外要掌握各種函數(shù)求導的方法,尤其是復合函數(shù)、隱函數(shù)求導。微分中值定理也是重點掌握的內(nèi)容,這一部分可以出各種各樣構(gòu)造輔助函數(shù)的證明,包括等式和不等式的證明,這種類型題目的技巧性比較強,應(yīng)多加練習。函數(shù)的凹凸性、拐點及漸近線,也是一個重點內(nèi)容,在近幾年考研中常出現(xiàn)。曲率部分,僅數(shù)一考生需要掌握,但是并不是重點,在考試中很少出現(xiàn),記住相關(guān)公式即可。
多元函數(shù)微分學,掌握連續(xù)性、偏導性、可微性三者之間的關(guān)系,重點掌握各種函數(shù)求偏導的方法。多元函數(shù)的應(yīng)用也是重點,主要是條件極值和最值問題。方向?qū)?shù)、梯度,空間曲線、曲面的切平面和法線,僅數(shù)一考生需要掌握,但是不是重點,記憶相關(guān)公式即可。
三、積分學部分:
一元函數(shù)積分學的一個重點是不定積分與定積分的計算。這個對于有些同學來說可能不難,但是要想用簡便的方法解答還是需要多花點時間學習的。在計算過程中,會用到不定積分/定積分的基本性質(zhì)、換元積分法、分部積分法。其中,換元積分法是重點,會涉及到三角函數(shù)換元、倒代換,這種方法相信多數(shù)同學都會,但是如何準確地進行換元從而得到最終答案,卻是需要下一番工夫的。定積分的應(yīng)用同樣是重點,?嫉氖敲娣e、體積的求解,同學們應(yīng)牢記相關(guān)公式,通過多練掌握解題技巧。對于定積分在物理上的應(yīng)用(數(shù)一數(shù)二有要求),如功、引力、壓力、質(zhì)心、形心等,近幾年考試基本都沒有涉及,考生只要記住求解公式即可。
多元函數(shù)積分學的一個重點是二重積分的計算,其中要用到二重積分的性質(zhì),以及直角坐標與極坐標的相互轉(zhuǎn)化。這部分內(nèi)容,每年都會考到,考生要引起重視,需要明白的是,二重積分并不是難點。三重積分、曲線和曲面積分屬于數(shù)一單獨考查的內(nèi)容,主要是掌握三重積分的計算、格林公式和高斯公式以及曲線積分與路徑無關(guān)的條件。對于數(shù)一考生來說,這部分是重點,也是難點所在。散度、旋度同樣是數(shù)一考生單獨考查內(nèi)容,但是不是重點,會進行簡單計算即可。
四、向量代數(shù)與空間解析幾何部分:
這部分內(nèi)容只對考數(shù)一的同學要求,但不是重點。從近些年考研真題來看,考查很少,偶爾以選擇、填空的形式出現(xiàn)。
五、無窮級數(shù)部分:
這部分內(nèi)容對數(shù)二的考生不作要求。數(shù)一、三的考生需要掌握兩個重點:一是常數(shù)項級數(shù)性質(zhì)問題,尤其是如何判斷級數(shù)的斂散性;二是冪級數(shù)?忌炀氄莆諆缂墧(shù)的收斂區(qū)間、收斂半徑、和函數(shù)以及冪級數(shù)的展開問題。
六、微分方程與差分方程部分:
差分方程只對數(shù)三考生要求,但不是重點。這里有兩個重點:一階線性微分方程;二階常系數(shù)齊次/非齊次線性微分方程。
【考研數(shù)學備考 高等數(shù)學重難點】相關(guān)文章:
2015年考研數(shù)學 高等數(shù)學六大重難點04-29
2012考研數(shù)學重難點攻略04-28
考研高等數(shù)學不是難點之命題規(guī)律04-28
2012考研數(shù)學重難點分布攻略04-28
2015考研數(shù)學 考研高數(shù)重難點總結(jié)04-29
2015考研數(shù)學 高數(shù)重難點解析05-01
強化階段考研數(shù)學重難點精細詳解04-29