- 高中必修數(shù)學(xué)教案 推薦度:
- 高中必修數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
高中必修數(shù)學(xué)教案
作為一名為他人授業(yè)解惑的教育工作者,往往需要進(jìn)行教案編寫(xiě)工作,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么教案應(yīng)該怎么寫(xiě)才合適呢?以下是小編為大家收集的高中必修數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。
高中必修數(shù)學(xué)教案1
1.1.1 任意角
教學(xué)目標(biāo)
(一) 知識(shí)與技能目標(biāo)
理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.
。ǘ 過(guò)程與能力目標(biāo)
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書(shū)寫(xiě)終邊相同角的集合;掌握區(qū)間角的集合的書(shū)寫(xiě).
。ㄈ 情感與態(tài)度目標(biāo)
1. 提高學(xué)生的推理能力;
2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)
任意角概念的理解;區(qū)間角的集合的書(shū)寫(xiě). 教學(xué)難點(diǎn)
終邊相同角的集合的表示;區(qū)間角的集合的書(shū)寫(xiě).
教學(xué)過(guò)程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.
、诮堑拿Q:
③角的分類: A
正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角
、茏⒁猓
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角.
、菥毩(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.
例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z
、 α是任一角;
、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無(wú)限個(gè),它們相差
360°的整數(shù)倍;
、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
、牛120°;
、640°;
、牵950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
、129°48’,第二象限角;
例4.寫(xiě)出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫(xiě)出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫(xiě)出來(lái).
4.課堂小結(jié)
、俳堑亩x;
、诮堑姆诸悾
正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角
、巯笙藿;
、芙K邊相同的角的表示法.
5.課后作業(yè):
①閱讀教材P2-P5;
、诮滩腜5練習(xí)第1-5題;
、劢滩腜.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°<
各是第幾象限角?
。糼·180°+135°(k∈Z) .
<n·360°+135°(n∈Z) ,
當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),
屬于第二象限角
。糿·360°+315°(n∈Z) ,
當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°<此時(shí),
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學(xué)目標(biāo)
。ǘ 知識(shí)與技能目標(biāo)
理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
。ㄈ 過(guò)程與能力目標(biāo)
能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問(wèn)題
。ㄋ模 情感與態(tài)度目標(biāo)
通過(guò)新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的.精神;通過(guò)對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美. 教學(xué)重點(diǎn)
弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學(xué)過(guò)程
一、復(fù)習(xí)角度制:
初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來(lái)度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來(lái)度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來(lái)不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來(lái)度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.
3.思考:
。1)一定大小的圓心角?所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
。2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):
①半圓所對(duì)的圓心角為
、谡麍A所對(duì)的圓心角為
③正角的弧度數(shù)是一個(gè)正數(shù).
、茇(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).
⑤零角的弧度數(shù)是零.
、藿铅恋幕《葦(shù)的絕對(duì)值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
、賹⒔嵌然癁榛《龋
、趯⒒《然癁榻嵌龋
5.常規(guī)寫(xiě)法:
、 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫(xiě)成多少π 的形式, 不必寫(xiě)成小數(shù).
、 弧度與角度不能混用.
弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計(jì)算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6 –P8;
、诮滩腜9練習(xí)第1、2、3、6題;
、劢滩腜10面7、8題及B2、3題.
高中必修數(shù)學(xué)教案2
【教學(xué)目標(biāo)】
1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點(diǎn)】
教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
【教學(xué)過(guò)程】
1.情景導(dǎo)入
教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
。2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類
。4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
。5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
。1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)
。2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?
。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
。4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
。5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5、典型例題
例1:判斷下列語(yǔ)句是否正確。
、庞幸粋(gè)面是多邊形,其余各面都是三角形的`幾何體是棱錐。
、朴袃蓚(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案 A B
6、課堂檢測(cè):
課本P8,習(xí)題1.1 A組第1題。
7.歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
【板書(shū)設(shè)計(jì)】
一、柱、錐、臺(tái)、球的結(jié)構(gòu)
二、例題
例1
變式1、2
【作業(yè)布置】
導(dǎo)學(xué)案課后練習(xí)與提高
1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征
課前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標(biāo):
通過(guò)圖形探究柱、錐、臺(tái)、球的結(jié)構(gòu)特征
二、預(yù)習(xí)內(nèi)容:
閱讀教材第2—6頁(yè)內(nèi)容,然后填空
(1)多面體的概念: 叫多面體,
叫多面體的面, 叫多面體的棱,
叫多面體的頂點(diǎn)。
、 棱柱:兩個(gè)面 ,其余各面都是 ,并且每相鄰兩個(gè)四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱
、诶忮F:有一個(gè)面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐
、劾馀_(tái):用一個(gè) 棱錐底面的平面去截棱錐, ,叫作棱臺(tái)。
。2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。
、賵A柱: 所圍成的幾何體叫做圓柱
、趫A錐: 所圍成的幾何
體叫做圓錐
、蹐A臺(tái): 的部分叫圓臺(tái)
. ④球的定義
思考:
。1)試分析多面體與旋轉(zhuǎn)體有何去別
。2)球面球體有何去別
。3)圓與球有何去別
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
疑惑點(diǎn) 疑惑內(nèi)容
高中必修數(shù)學(xué)教案3
一、指導(dǎo)思想。
研究新教材,了解新的信息,更新觀念,探求新的教學(xué)模式,加強(qiáng)教改力度,注重團(tuán)結(jié)協(xié)作,面向全體學(xué)生,因材施教,激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),全力促進(jìn)教學(xué)效果的提高。
二、學(xué)生基本情況。
新的學(xué)期里,本人任教高三10、11班兩個(gè)文科班的數(shù)學(xué)課,這些學(xué)生大部分基礎(chǔ)知識(shí)薄弱,沒(méi)有自主學(xué)習(xí)的習(xí)慣,自制能力差,上課注意力不集中,容易走神,課后獨(dú)立完成作業(yè)能力差,懶惰思想嚴(yán)重,因此整個(gè)高三的復(fù)習(xí)任務(wù)相當(dāng)艱巨。
三、工作措施。
1、認(rèn)真學(xué)習(xí)《考試說(shuō)明》,研究高考試題,提高復(fù)習(xí)課的效率。
《考試說(shuō)明》是命題的依據(jù),備考的依據(jù)。高考試題是《考試說(shuō)明》的具體體現(xiàn)。因此要認(rèn)真研究近年來(lái)的考試試題,從而加深對(duì)《考試說(shuō)明》的理解,及時(shí)把握高考新動(dòng)向,理解高考對(duì)教學(xué)的導(dǎo)向,以利于我們準(zhǔn)確地把握教學(xué)的重、難點(diǎn),有針對(duì)性地選配例題,優(yōu)化教學(xué)設(shè)計(jì),提高我們的復(fù)習(xí)質(zhì)量。
2、教學(xué)進(jìn)度。
按照高三數(shù)學(xué)組學(xué)年教學(xué)計(jì)劃進(jìn)行,結(jié)合本班實(shí)際情況,進(jìn)行第一輪高三總復(fù)習(xí),預(yù)計(jì)在2月底3月初完成。配合學(xué)校舉行的月考,并及時(shí)進(jìn)行教學(xué)反思。
3、了解學(xué)生。
通過(guò)課堂展示、學(xué)生交流互動(dòng)、批改作業(yè)、評(píng)閱試卷、課堂板書(shū)以及課堂上學(xué)生情態(tài)的變化等途徑,深入的了解學(xué)生的情況,及時(shí)的觀察、發(fā)現(xiàn)、捕捉有關(guān)學(xué)生的信息調(diào)節(jié)教法,讓教師的教程度上服務(wù)于學(xué)生。對(duì)于基礎(chǔ)較薄弱的學(xué)生,應(yīng)多鼓勵(lì)、多指導(dǎo)學(xué)法,增強(qiáng)他們學(xué)下去的信心和勇氣。
4、精心備課。
精心的備好每一節(jié)課,努力提高課堂效率,平常多去聽(tīng)同科教師的課,向老教師學(xué)習(xí)經(jīng)驗(yàn)和好的教學(xué)方法,努力提高自己的任教能力。
5、優(yōu)化練習(xí)。
提高練習(xí)的有效性:知識(shí)的鞏固,技能的熟練,能力的提高都需要通過(guò)適當(dāng)而有效的練習(xí)才能實(shí)現(xiàn)。練習(xí)題要精選,題量要適度,注意題目的典型性和層次性,以適應(yīng)不同層次的學(xué)生;對(duì)練習(xí)要全批全改,做好學(xué)生的錯(cuò)題統(tǒng)計(jì),對(duì)于錯(cuò)的較多的題目,找出錯(cuò)的原因。
練習(xí)的講評(píng)是高三數(shù)學(xué)教學(xué)的一個(gè)重要的環(huán)節(jié),不該講的`就不講,該點(diǎn)撥的要點(diǎn)撥,該講的內(nèi)容一定要講透;對(duì)于典型問(wèn)題,要讓學(xué)生展示講解,充分暴露學(xué)生的思維過(guò)程,加強(qiáng)教學(xué)的針對(duì)性。多做練習(xí),注重綜合。選取“題型小、方法巧、運(yùn)用活、覆蓋寬”的題目訓(xùn)練學(xué)生的應(yīng)變能力。
6、注重學(xué)習(xí)方法、數(shù)學(xué)方法的指導(dǎo)。
我們?cè)趶?fù)習(xí)中要加強(qiáng)數(shù)學(xué)思想方法的復(fù)習(xí):如轉(zhuǎn)化與化歸的思想、函數(shù)與方程的思想、分類與整合的思想、數(shù)形結(jié)合的思想、特殊與一般的思想、或然與必然的思想等。以及配方法、換元法、待定系數(shù)法、反證法、數(shù)學(xué)歸納法、解析法等數(shù)學(xué)基本方法都要有意識(shí)地根據(jù)學(xué)生學(xué)習(xí)實(shí)際予以復(fù)習(xí)及落實(shí)。
針對(duì)學(xué)生的具體情況,進(jìn)行復(fù)習(xí)的學(xué)法指導(dǎo),使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,提高復(fù)習(xí)的效率。如:要求學(xué)生建立錯(cuò)題本,尤其是考后錯(cuò)題,讓學(xué)生養(yǎng)成反思的習(xí)慣;養(yǎng)成學(xué)生善于結(jié)合圖形直觀思維的習(xí)慣;養(yǎng)成學(xué)生表述規(guī)范,按照解答題的必要步驟和書(shū)寫(xiě)格式答題的習(xí)慣等。
7、注意心理調(diào)節(jié)和應(yīng)試技巧的訓(xùn)練。
應(yīng)試的技巧和心理的訓(xùn)練要三高三的第一節(jié)課開(kāi)始,要貫穿于整個(gè)高三的復(fù)習(xí)課,良好的心理素質(zhì)是高考成功的一個(gè)重要環(huán)節(jié)。我們數(shù)學(xué)老師在講課時(shí)尤其是考試中主要鍛煉學(xué)生的心理素質(zhì),我們教育學(xué)生要以平常心來(lái)對(duì)待每一次考試。
高中必修數(shù)學(xué)教案4
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。
掌握兩角和與差的'正、余弦公式,能用公式解決相關(guān)問(wèn)題。
教學(xué)重難點(diǎn)
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過(guò)程
復(fù)習(xí)
兩角差的余弦公式
用- B代替B看看有什么結(jié)果?
高中必修數(shù)學(xué)教案5
第一章:空間幾何體
1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征
一、教學(xué)目標(biāo)
1.知識(shí)與技能
。1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
。3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
2.過(guò)程與方法
。1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
3.情感態(tài)度與價(jià)值觀
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
。2)實(shí)物模型、投影儀
四、教學(xué)思路
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1.教師提出問(wèn)題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)
2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3.課本P8,習(xí)題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7練習(xí)1、2(1)(2)
課本P8習(xí)題1.1第2、3、4題
五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
六、布置作業(yè)
課本P8練習(xí)題1.1B組第1題
課外練習(xí)課本P8習(xí)題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時(shí))
一、教學(xué)目標(biāo)
1.知識(shí)與技能
。1)掌握畫(huà)三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過(guò)程與方法
主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀
(1)提高學(xué)生空間想象力
。2)體會(huì)三視圖的作用
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫(huà)出簡(jiǎn)單組合體的三視圖
難點(diǎn):識(shí)別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比
2.教學(xué)用具:實(shí)物模型、三角板
四、教學(xué)思路
。ㄒ唬﹦(chuàng)設(shè)情景,揭開(kāi)課題
“橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫(huà)出空間幾何體的三視圖嗎?
。ǘ⿲(shí)踐動(dòng)手作圖
1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫(huà)出它們的三視圖,教師巡視,學(xué)生畫(huà)完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫(huà)出簡(jiǎn)單組合體的三視圖
(1)畫(huà)出球放在長(zhǎng)方體上的三視圖
。2)畫(huà)出礦泉水瓶(實(shí)物放在桌面上)的三視圖
學(xué)生畫(huà)完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
。1)投影出示圖片(課本P10,圖1.2-3)
請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?
。2)你能畫(huà)出圓臺(tái)的三視圖嗎?
(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。
4.請(qǐng)同學(xué)們畫(huà)出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
。ㄎ澹┱n外練習(xí)
1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫(huà)出它的三視圖。
2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫(huà)出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時(shí))
一、教學(xué)目標(biāo)
1.知識(shí)與技能
。1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
2.過(guò)程與方法
學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
3.情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
。2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
。3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
2.教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的.正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。
練習(xí)反饋
根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
3.探求空間幾何體的直觀圖的畫(huà)法
(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟
四、作業(yè)
1.書(shū)畫(huà)作業(yè),課本P17練習(xí)第5題
2.課外思考課本P16,探究(1)(2)
【高中必修數(shù)學(xué)教案】相關(guān)文章:
高中必修4數(shù)學(xué)教案03-13
高中必修數(shù)學(xué)教案5篇01-08
高中語(yǔ)文必修五填空11-07
高中語(yǔ)文必修五背誦11-07
高中地理必修二教案11-05
高中必修一化學(xué)教案11-06
高中物理必修2教案01-07
高中化學(xué)必修2教案02-06