久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

高中數(shù)學備課教案

時間:2022-09-29 09:43:22 高中數(shù)學教案 我要投稿

高中數(shù)學備課教案模板

  作為一名教職工,就難以避免地要準備教案,借助教案可以提高教學質(zhì)量,收到預期的教學效果。教案應該怎么寫才好呢?下面是小編精心整理的高中數(shù)學備課教案模板,歡迎大家借鑒與參考,希望對大家有所幫助。

高中數(shù)學備課教案模板

高中數(shù)學備課教案模板1

  一、教學目標

  1.知識與技能

  (1)掌握畫三視圖的基本技能

  (2)豐富學生的空間想象力

  2.過程與方法

  主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3.情感態(tài)度與價值觀

  (1)提高學生空間想象力

  (2)體會三視圖的作用

  二、教學重點、難點

  重點:畫出簡單組合體的三視圖

  難點:識別三視圖所表示的空間幾何體

  三、學法與教學用具

  1.學法:觀察、動手實踐、討論、類比

  2.教學用具:實物模型、三角板

  四、教學思路

  (一)創(chuàng)設情景,揭開課題

  “橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

  在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

  (二)實踐動手作圖

  1.講臺上放球、長方體實物,要求學生畫出它們的'三視圖,教師巡視,學生畫完后可交流結(jié)果并討論;

  2.教師引導學生用類比方法畫出簡單組合體的三視圖

  (1)畫出球放在長方體上的三視圖

  (2)畫出礦泉水瓶(實物放在桌面上)的三視圖

  學生畫完后,可把自己的作品展示并與同學交流,總結(jié)自己的作圖心得。

  作三視圖之前應當細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

  (1)投影出示圖片(課本P10,圖1.2-3)

  請同學們思考圖中的三視圖表示的幾何體是什么?

  (2)你能畫出圓臺的三視圖嗎?

  (3)三視圖對于認識空間幾何體有何作用?你有何體會?

  教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。

  4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

  (三)鞏固練習

  課本P12練習1、2P18習題1.2A組1

  (四)歸納整理

  請學生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)課外練習

  1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

高中數(shù)學備課教案模板2

  一、教學目標

  知識與技能:

  理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

  過程與方法:

  會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

  情感態(tài)度與價值觀:

  1、提高學生的推理能力;

  2、培養(yǎng)學生應用意識。

  二、教學重點、難點:

  教學重點:

  任意角概念的理解;區(qū)間角的'集合的書寫。

  教學難點:

  終邊相同角的集合的表示;區(qū)間角的集合的書寫。

  三、教學過程

  (一)導入新課

  1、回顧角的定義

 、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角。

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  (二)教學新課

  1、角的有關(guān)概念:

 、俳堑亩x:

  角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

 、诮堑拿Q:

  注意:

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

  ⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角。

  ⑤練習:請說出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高中數(shù)學備課教案模板3

  一、教學目標:

  知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義

  過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義

  情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。

  二、重難點:

  教學重點:曲線參數(shù)方程的定義及方法

  教學難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.

  三、教學方法:

  啟發(fā)、誘導發(fā)現(xiàn)教學.

  四、教學過程

  (一)、復習引入:

  1.寫出圓方程的標準式和對應的參數(shù)方程。

  圓參數(shù)方程 (為參數(shù))

  (2)圓參數(shù)方程為: (為參數(shù))

  2.寫出橢圓參數(shù)方程.

  3.復習方向向量的概念.提出問題:已知直線的一個點和傾斜角,如何表示直線的參數(shù)方程?

  (二)、講解新課:

  1、問題的提出:一條直線L的傾斜角是,并且經(jīng)過點P(2,3),如何描述直線L上任意點的位置呢?

  如果已知直線L經(jīng)過兩個定點Q(1,1),P(4,3),

  那么又如何描述直線L上任意點的位置呢?

  2、教師引導學生推導直線的參數(shù)方程:

  (1)過定點傾斜角為的直線的`

  參數(shù)方程

  (為參數(shù))

  【辨析直線的參數(shù)方程】:設M(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點P到點M的位移,可以用有向線段數(shù)量來表示。帶符號.

  (2)、經(jīng)過兩個定點Q,P(其中)的直線的參數(shù)方程為。其中點M(X,Y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點M分有向線段的數(shù)量比。當時,M為內(nèi)分點;當且時,M為外分點;當時,點M與Q重合。

  (三)、直線的參數(shù)方程應用,強化理解。

  1、例題:

  學生練習,教師準對問題講評。反思歸納:

  1)求直線參數(shù)方程的方法;

  2)利用直線參數(shù)方程求交點。

  2、鞏固導練:

  補充:

  1)直線與圓相切,那么直線的傾斜角為(A)

  A.或 B.或 C.或 D.或

  2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則 .

  解:直線化為普通方程是,

  該直線的斜率為,

  直線(為參數(shù))化為普通方程是,

  該直線的斜率為,

  則由兩直線垂直的充要條件,得, 。

  (四)、小結(jié):

  (1)直線參數(shù)方程求法;

  (2)直線參數(shù)方程的特點;

  (3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。

  (五)、作業(yè):

  補充:設直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為

  【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎題。

  解析:由題直線的普通方程為,故它與與的距離為。

  五、教學反思:

高中數(shù)學備課教案模板4

  一、說教材

  1.從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng).

  2.從學生認知角度看

  從學生的思維特點看,很容易把本節(jié)資料與等差數(shù)列前n項和從公式的構(gòu)成、特點等方面進行類比,這是進取因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不一樣,這對學生的思維是一個突破,另外,對于q=1這一特殊情景,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.

  3.學情分析

  教學對象是剛進入高中的學生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹.

  4.重點、難點

  教學重點:公式的推導、公式的特點和公式的運用.

  教學難點:公式的推導方法和公式的靈活運用.

  公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點.

  二、說目標

  知識與技能目標:

  理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關(guān)的問題.

  過程與方法目標:

  經(jīng)過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事.

  情感與態(tài)度價值觀:

  經(jīng)過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點.

  三、說過程

  學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設計了如下的教學過程:

  1.創(chuàng)設情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚.為什么呢

  設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的進取性.故事資料緊扣本節(jié)課的主題與重點.

  此時我問:同學們,你們明白西薩要的是多少粒小麥嗎引導學生寫出麥?倲(shù).帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.

  設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學關(guān)鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應舍得花時間營造知識構(gòu)成過程的氛圍,突破學生學習的障礙.同時,構(gòu)成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.

  2.師生互動,探究問題

  在肯定他們的思路后,我之后問:1,2,22,…,263是什么數(shù)列有何特征應歸結(jié)為什么數(shù)學問題呢

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系(學生會發(fā)現(xiàn),后一項都是前一項的`2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)

  設計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學生看來卻是“不可思議”的,所以教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維本事的良好契機.

  經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.教師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

  設計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心.

  3.類比聯(lián)想,解決問題

  這時我再順勢引導學生將結(jié)論一般化,

  那里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.

  設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自我探究公式,從而體驗到學習的愉快和成就感.

  對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(引導學生得出公式的另一形式)

  設計意圖:經(jīng)過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學生由簡單地模仿和理解,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的本事.這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.

  4.討論交流,延伸拓展

  (略)

【高中數(shù)學備課教案】相關(guān)文章:

高中數(shù)學備課教案12-22

高中數(shù)學備課教案(7篇)12-24

高中數(shù)學備課教案7篇12-23

高中數(shù)學備課教案8篇12-31

高中數(shù)學備課教案(8篇)01-01

高中數(shù)學備課教案通用7篇12-27

高中數(shù)學備課教案合集8篇01-02

高中數(shù)學備課教案集錦8篇01-03

高中數(shù)學備課組長總結(jié)06-04