久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

數學初中教案

時間:2022-11-06 11:41:27 初中數學教案 我要投稿

數學初中教案

  作為一名教學工作者,有必要進行細致的教案準備工作,教案是教材及大綱與課堂教學的紐帶和橋梁?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編為大家整理的數學初中教案,僅供參考,希望能夠幫助到大家。

數學初中教案

數學初中教案1

  我說課的內容是七年級教科書第一冊第二章第二節(jié)“數軸”的第一課時內容。我從以下幾個方面對本節(jié)課的教學設計進行說明。

  一:教材分析:

  本節(jié)課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發(fā),引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。

  二:教學目標:

  根據新課標的要求及七年級學生的認知水平我特制定的本節(jié)課的教學目標如下:

  1.使學生理解數軸的三要素,會畫數軸。

  2.能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示

  3.向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養(yǎng)學生對數學的學習興趣。

  三:教學重難點確定:

  正確理解數軸的概念和有理數在數軸上的表示方法是本節(jié)課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節(jié)課的教學難點。

  四:學情分析:

  ⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統(tǒng)的去講述。

  ⑵學生學習本節(jié)課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學中教師應予以簡單明白、深入淺出的分析。

 、怯捎谄吣昙墝W生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生學習的主動性。

 、刃睦砩,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。

  五:教學策略:

  由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節(jié)課以觀察、思考、討論貫穿于整個教學環(huán)節(jié)之中,采用啟發(fā)式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發(fā)展,從而培養(yǎng)學生的數形結合的思想。

  為充分發(fā)揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環(huán)節(jié):

 。ㄒ唬、溫故知新,激發(fā)情趣

 。ǘ、得出定義,揭示內涵

 。ㄈ、手腦并用,深入理解

 。ㄋ模、啟發(fā)誘導,初步運用

 。ㄎ澹、反饋矯正,注重參與

 。、歸納小結,強化思想

 。ㄆ撸、布置作業(yè),引導預習

  六:教學程序設計:

 。ㄒ唬、溫故知新,激發(fā)情趣:

  首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問:

 。1)零上5°C用5表示。

 。2)零下15°C用-15表示。

 。3)0°C用0表示。

  然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的心情進入了本節(jié)課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。

 。ǘ、得出定義,揭示內涵:

  教師設問:到底什么是數軸?如何畫數軸呢?

 。1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。)

 。2)標正方向(這里說明我們在水平位置的數軸上規(guī)定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸。)

 。3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。)

  由于畫數軸是本節(jié)課的教學重點,教師板書這三個步驟,給學生以示范。

  畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”(通過教師的親切的語言啟發(fā)學生,以培養(yǎng)師生間的默契)

  通過討論由師生共同得到數軸的定義:規(guī)定了原點、正方向和單位長度的直線叫做數軸。

  至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。

 。ㄈ、手腦并用,深入理解:

  1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么?

  A、B、C三個圖形從數軸的三要素出發(fā),D和F是學生可能出現(xiàn)的錯誤,給學生足夠的`觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。

  2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上)學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發(fā)展,畫完后教師給出評價,如“很好”“很規(guī)范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發(fā)展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。

  我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。

 。ㄋ模l(fā)誘導,初步運用:

  有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。

  安排課本23頁的例1,

  利用黑板上的例題圖形讓學生來操作,教師提出要求:

  1、要把點標在線上2、要把數標在點的上方

  通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發(fā)學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。

 。ㄎ澹、反饋矯正,注重參與:

  為鞏固本節(jié)的教學重點讓學生獨立完成:

  1、課本23頁練習1、2

  2、課本23頁3題的(給全體學生以示范性讓一個同學板書)

  為向學生進一步滲透數形結合的思想讓學生討論:

  3、數軸上的點P與表示有理數3的點A距離是2,

 。1)試確定點P表示的有理數;

  (2)將A向右移動2個單位到B點,點B表示的有理數是多少?

 。3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少?

  先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。

 。、歸納小結,強化思想:

  根據學生的特點,師生共同小結:

  1、為了鞏固本節(jié)課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節(jié)課你學會了用什么來表示有理數?

  2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數?

  讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。

 。ㄆ撸、布置作業(yè),引導預習:

  為面向全體學生,安排如下:

  1、全體學生必做課本25頁1、2、3

  2、最后布置一個思考題:

  與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何?(來引導學生養(yǎng)成預習的學習習慣)

  七:板書設計:(略)

  總之,在教學過程中,我始終注意發(fā)揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發(fā)現(xiàn)結論,實現(xiàn)師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養(yǎng)學生良好的數學素養(yǎng)和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。

  以上是我對本節(jié)課的設想,不足之處請老師們多多批評、指正,謝謝

數學初中教案2

  [教學目標]

  1、體會并了解反比例函數的圖象的意義

  2、能列表、描點、連線法畫出反比例函數的圖象

  3、通過反比例函數的圖象的分析,探索并掌握反比例函數的圖象的性質

  [教學重點和難點]

  本節(jié)教學的重點是反比例函數的圖象及圖象的性質

  由于反比例函數的圖象分兩支,給畫圖帶來了復雜性是本節(jié)教學的難點

  [教學過程]

  1、情境創(chuàng)設

  可以從復習一次函數的圖象開始:你還記得一次函數的圖象嗎?在回憶與交流中,進一步認識函數圖象的直觀有助于理解函數的性質。轉而導人關注新的函數——反比例函數的圖象研究:反比例函數的圖象又會是什么樣子呢?

  2、探索活動

  探索活動1反比例函數y?

  由于反比例函數y?

  要分幾個層次來探求:

  (1)可以先估計——例如:位置(圖象所在象限、圖象與坐標軸的交點等)、趨勢(上升、下降等);

  (2)方法與步驟——利用描點作圖;

  列表:取自變量x的哪些值?——x是不為零的任何實數,所以不能取x的值的為零,但仍可以以零為基準,左右均勻,對稱地取值。

  描點:依據什么(數據、方法)找點?

  連線:怎樣連線?——可在各個象限內按照自變量從小到大的.順序用兩條光滑的曲線把所描的點連接起來。

  探索活動2反比例函數y?2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學生第一次接觸有一定的難度,因此需x2的圖象.x

  可以引導學生采用多種方式進行自主探索活動:

  2的圖象的方式與步驟進行自主探索其圖象;x

  222(2)可以通過探索函數y?與y??之間的關系,畫出y??的圖象.__

  22探索活動3反比例函數y??與y?的圖象有什么共同特征?__(1)可以用畫反比例函數y?

  引導學生從通過與一次函數的圖象的對比感受反比例函數圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數y?

  k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當k?0時,圖象在第一、第x

數學初中教案3

  相交線

  大家好,首先自我介紹一下,我叫xx,來自xx大學。我今天試講的是有關相交線的內容。說起相交線,其實咱們在座的各位同學并不陌生,生活中許許多多有關相交線事例,比如說:包頭市區(qū)里的街道,蓋樓房用的塔吊,還有就是家里的窗戶等等。

  要想了解有關相交線的特征,那么首先由我來想大家介紹一下與相交線相關的一些角:

  鄰補角:兩個角有一條公共邊,他們的另一邊互為反向延長線,具有這種關系的兩個角互為鄰補角。(注意其中的兩個條件)

  特別說明:

  1、鄰補角是具有特殊關系的兩個角,是兩個角互補的特例,如果兩個角互為鄰補角,那么這兩個角一定互補,但是互補的兩個角不一定互為鄰補角。

  2、一個角的補角很多,但是鄰補角只有兩個。

  對頂角:兩個角有一個公共頂點,并且其中一個角的兩邊分別是另一個角的兩邊的反向延長線,具有這種位置關系的兩個角為對頂角。(注意其中的兩個條件)

  特別說明:

  1、對頂角一定相等,且成對出現(xiàn),但是相等的兩個角不一定是對頂角。

  垂直:垂直是相交的一種特殊情況,當提到線段與線段、線段與射線、線段與直線垂直時,是指他們所在的直線相互垂直。

  1、兩條直線垂直是,四個角都是直角,反過來,當兩條直線相交時,有一個角是直角,那么這兩條直線就垂直。

  垂線:兩條直線相互垂直,其中的一條直線叫做另一條直線的垂線。,他們的交點叫做垂足。

  點到直線的距離:直線外的一點到這條直線的垂線段的距離,叫做點到直線的距離。

  特別說明:

  1、點到直線的距離是指垂線段的長度,而不是垂線段。垂線段是一個幾何圖形。而距離是一個數量。

  2、過直線外的一點有且只有一條直線與已知直線垂直。

  證明方法:

  反證法:

  假設直線L與直線外一點A,過A有2條直線與L垂直。

  作AB⊥L,垂足為B;作AC⊥L,垂足為C。則AB與AC交于A。又∵AB⊥L,AC⊥L∴AB∥AC

  “AB與AC交于A”與“AB∥AC”矛盾,所以假設不成立。即過直線外一點,有且只有一條直線于已知直線垂直。

  3、垂線段的性質:連接直線外的一點與已知直線上各點的所有線段中,垂線段最短。

  證明方法

  由平行線一點向另一條線做無數個連線,

  垂線的平方=其他連線的`平方-垂點與連接點線段的平方根據直角三角形兩短邊平方和等于斜邊平方得知平行線間垂線段最短“三線八角”的判定

  所謂的“三線八角”就是,兩條直線被第三條直線所截,構成8個角。這八個角中共有4對同位角,2對同旁內角,2對內錯角。

  同位角的特征:位于截線同一方,被截兩線的同側。呈“F”型。內錯角的特征:位于截線的兩側,被截兩線直接。呈“Z”型

  同旁內角的特征:位于截線的同一旁,被截兩線之間。呈“U”型

數學初中教案4

  把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

  一、教材內容分析

  本節(jié)課是數學人教版七年級上冊第三章第二節(jié)第二小節(jié)的內容。這是一節(jié)“概念加例題型”課,此種課型中的學習內容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節(jié)課主要內容是利用移項解一元一次方程。是學生學習解一元一次方程的基礎,這一部分內容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎。這類課一般采用“導學導教,當堂訓練”的方式進行,教師指導學生學習的重點一般不放在概念上,要特別留意學生運用概念解題或做與例題類似的習題時,對概念的理解是否到位。

  二、教學目標:

  1.知識與技能:

  (1)找相等關系列一元一次方程;

  (2)用移項解一元一次方程。

  (3)掌握移項變號的基本原則

  2.過程與方法:經歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析問題和解決問題的能力,認識用方程解決實際問題的關鍵是建立相等關系。

  3.情感、態(tài)度:通過具體情境引入新問題,在移項法則探究的過程中,培養(yǎng)學生合作意識,滲透化歸的思想。

  三、學情分析

  針對七年級學生學習熱情高,但觀察、分析、概括能力較弱的特點,本節(jié)從實際問題入手,讓學生通過自己思考、動手,激發(fā)學生的求知欲,提高學生學習的興趣與積極性。在課堂教學中,學生主要采取自學、討論、思考、合作交流的學習方式,使學生真正成為課堂的主人,逐步培養(yǎng)學生觀察、概括、歸納的能力。

  四、教學重點:

  利用移項解一元一次方程。

  五、教學難點:

  移項法則的探究過程。

  六、教學過程:

  (一)情景引入

  引例:請同學們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )

  A.3個老頭,4個梨B.4個老頭,3個梨C.5個老頭,6個梨D.7個老頭,8個梨

  設計意圖:大部分同學會用算術法(答案代入法)來解答的,而這類問題我們如何用方程來解答呢?激起學生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

  (二)出示學習目標

  1.理解移項法,明確移項法的依據,會解形如ax+b=cx+d類型的一元一次方程。

  2.會建立方程解決簡單的實際問題。

  設計意圖:這兩個目標的達成,也驗證了本節(jié)課學生自學的效果,這也是本節(jié)課的教學重難點。

  (三)導教導學

  1.出示自學指導

  自學教材問題2到例3的內容,思考以下問題:

  (1)問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題可作為列方程的依據的等量關系是什么?

  (2)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的'格式正確解答問題)

  2.學生自學

  學生根據自學提綱進行獨立學習,教師巡視,對自學速度慢的、自學能力差的、注意力不夠集中的學生給以暗示和幫扶,有利于自學后的成果展示。

  3.交流展示(小組合作展示)

  (合作交流一)教材問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?

  問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

  1)設未知數:設這個班有X名學生,根據兩種不同分法這批書的總數就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。

  2)找相等關系:這批書的總數是一個定值,表示同一個量的兩個不同的式子相等。(板書)

  3)根據等量關系列方程:3x+20 = 4x-25(板書)

  【總結提升】解決“分配問題”應用題的列方程的基本要點:

  A.找出能貫穿應用題始終的一個不變的量。

  B.用兩個不同的式子去表示這個量。

  C.由表示這個不變的量的兩個式子相等列出方程。

  設計意圖:因為在自學提綱的引領下,每個小組自主學習的效果不同,反饋的意見不同,所以在展示中首先要展示學生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

  (變式訓練1)某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數

  (只設列即可)

  (變式訓練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

  設計意圖:檢查提問學生對“分配問題”應用題掌握的情況,學生回答后教師板書所列方程為后面教學做好鋪墊。學生會帶著“如何解這類方程?”的好奇心過渡到下一個環(huán)節(jié)的學習。

  (合作交流二)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟。

  (板書)把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

  《解一元一次方程——移項》教學設計(魏玉英)

  師:為什么等式(方程)可以這樣變形?依據什么?

  (出示)依據等式的基本性質

  即:等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式。

  師:解一元一次方程中“移項”起了什么作用?

  (出示)通過移項,使等號左邊僅含未知數的項,等號右邊僅含常數的項,使方程更接近x=a的形式。(與課題對照滲透轉化思想)

  (基礎訓練)搶答:判斷下列移項是否正確,如有錯誤,請修改

  《解一元一次方程——移項》教學設計(魏玉英)

  設計理念:讓各個小組憑著勢力去搶答。這五個習題重點考察學生對移項的掌握是本節(jié)課的重難點,習題分層設計且成梯度分布。

  【歸納板書】解“ax+b=cx+d”型的一元一次方程的步驟:

  (1)移項,

  (2)合并同類項,

  (3)系數化為1

  (綜合訓練)解下列方程(任選兩題)

  設計理念:第(2)、(3)兩題未知數系數是相同類型的,所以讓學生任選一題即可。通過綜合訓練能讓學生更進一步鞏固用移項和合并同類項去解方程了。

  (中考試練)若x=2是關于x的方程2x+3m-1=0的解,則m的值為

  設計理念:通過本題的訓練讓學生明確中考在本節(jié)的考點,同時激勵學生在數學知識的學習中要抓住知識的核心和重點。

  (四)我總結、我提高:

  通過本節(jié)課的學習我收獲了。

  設計意圖:通過小組之間互相談收獲的方式進行課堂小結,讓學生相互檢查本節(jié)課的學習效果?梢砸龑W生從本節(jié)課獲得的知識、解題的思想方法、學習的技巧等方面交流意見。

  (五)當堂檢測(50分)

  1.下列方程變形正確的是( )

  A.由-2x=6,得x=3

  B.由-3=x+2,得x=-3-2

  C.由-7x+3=x-3,得(-7+1)x=-3-3

  D.由5x=2x+3,得x=-1

  2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設出未知數和列出方程即可)

  3.(20分)已知x=1是關于x的方程3m+8x=m+x的解,求m的值。

  (師生活動)學生獨立答題,教師巡回檢查,對先答完的學生進行及時批改,并把得滿分的學生作為小老師對后解答完的學生的檢測進行評定,最后老師進行小結。

  (六)實踐活動

  請每一位同學用自己的年齡編一道“ax+b=cx+d”型的方程應用題,并解答。先在組內交流,選出組內最有創(chuàng)意的一個記在題卡上,自習在全班進行展示。

  設計意圖:

  讓學生課后完成,讓學生深深體會到數學來源于生活而又服務于生活,體現(xiàn)了數學知識與實際相結合。

數學初中教案5

  學習目標:

  1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過類比平行四邊形的性質定理,推導并掌握矩形的性質定理,會用定理進行一些簡單的計算證明、

  3、通過矩形的對角線相等這一性質能推導出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內在聯(lián)系,發(fā)展學生的合理推理的能力

  學習重難點:

  重點:矩形的性質定理

  難點:靈活應用矩形的性質進行有關的計算與證明

  課前準備

  教具準備:活動平行四邊形框架、教師準備PPT課件

  教學過程:

  知識回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質?

  【設計意圖】:

  通過對舊知的復習,一方面鞏固就知,另一方面為學習新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?

  用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當平行四邊形的一個內角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  【設計意圖】:

  通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學生更多的思考空間,促進學生積極思考,發(fā)展學生的思維

  歸納:有一個角是直角的平行四邊形叫做矩形、

  合作探究二:矩形的性質定理

  1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題

  2、小組合作:完成對性質的證明過程

  【設計意圖】:

  通過利用手中的矩形紙片動手操作使學生對矩形的性質獲得豐富的`直觀體驗,為總結矩形的性質定理打下堅實基礎

  矩形的性質定理1:矩形的四個角都是直角

  矩形的性質定理2:矩形的兩條對角線相等

  合作探究三:直角三角形的性質定理3

  設矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段

 。˙O是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關系,為什么?

  【設計意圖】:

  根據圖形學生很容易猜想結果,關鍵是從數學的角度證明留足充分的時間讓學生交流,教師適時引導,明確論證方法、學生獨立完成證明,以培養(yǎng)學生的推理能力、讓學生感受數學結論的確定性和證明的必要性

  結論:直角三角形斜邊上的中線等于斜邊的一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?

  當堂檢測:

  1、矩形具有而平行四邊形不具有的性質()

 。ˋ)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

 。1)若BD=3㎝,則AC=㎝

  (2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長

  4、工人師傅做鋁合金窗框分下面三個步驟進行:

  (1)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

 。2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據的數學道理是__________;

 。3)將直角尺靠緊窗框的一個角(如圖3)調整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據的數學道理是________________。

  課堂小結:

  請說出你本節(jié)課的收獲,與大家一塊分享!

  作業(yè):

  課本P、20第2題

  板書設計:

  xxx

數學初中教案6

  教學目標:

  1、理解切線的判定定理,并學會運用。

  2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

  教學重點:

  切線的判定定理和切線判定的方法。

  教學難點:

  切線判定定理中所闡述的圓的切線的兩大要素:一是經過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一。

  教學過程:

  一、復習提問

  【教師】

  問題1.怎樣過直線l上一點P作已知直線的垂線?

  問題2.直線和圓有幾種位置關系?

  問題3.如何判定直線l是⊙O的切線?

  啟發(fā):

  (1)直線l和⊙O的公共點有幾個?

  (2)圓心O到直線L的距離與半徑的數量關系如何?

  學生答完后,教師強調(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)

  再啟發(fā):若把距離OA理解為OA⊥l,OA=r;把點A理解為半徑在圓上的端點,請同學們試將上面定理用新的理解改寫成新的命題,此命題就是這節(jié)課要學的“切線的判定定理”(板書課題)

  二、引入新課內容

  【學生】命題:經過半徑的在圓上的端點且垂直于半徑的`直線是圓的切線。

  證明定理:啟發(fā)學生分清命題的題設和結論,寫出已知、求證,分析證明思路,閱讀課本P60。

  定理:經過半徑外端并且垂直于這條半徑的直線是圓的切線。

  定理的證明:已知:直線l經過半徑OA的外端點A,直線l⊥OA,

  求證:直線l是⊙O的切線

  證明:略

  定理的符號語言:∵直線l⊥OA,直線l經過半徑OA的外端A

  ∴直線l為⊙O的切線。

  是非題:

  (1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )

  (2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )

  三、例題講解

  例1、已知:直線AB經過⊙O上的點C,并且OA=OB,CA=CB。

  求證:直線AB是⊙O的切線。

  引導學生分析:由于AB過⊙O上的點C,所以連結OC,只要證明AB⊥OC即可。

  證明:連結OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直線AB經過半徑OC的外端C

  ∴直線AB是⊙O的切線。

  練習1、如圖,已知⊙O的半徑為R,直線AB經過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

  練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

  求證:CD是⊙O的切線。

  例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

  求證:DE是⊙O的切線。

  思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

  四、小結

  1.切線的判定定理。

  2.判定一條直線是圓的切線的方法:

  ①定義:直線和圓有唯一公共點。

 、跀盗筷P系:直線到圓心的距離等于該圓半徑(即d = r).[

 、矍芯的判定定理:經過半徑外端且與這條半徑垂直的直線是圓的切線。

  3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

  凡是已知公共點(如:直線經過圓上的點;直線和圓有一個公共點;)往往是"連結"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

  五、布置作業(yè):略

  《切線的判定》教后體會

  本課例《切線的判定》作為市考試院調研課型兼區(qū)級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發(fā),通過學生自我活動得到數學結論作為教學重點,呈現(xiàn)學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質的、有效的理解。本節(jié)課切實反映了平時的教學情況,為前來調研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:

  成功之處:

  一、教材的二度設計順應了學生的認知規(guī)律

  這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結論,導致錯誤,久之便會失去學習數學的興趣和信心。本教時課本上將切線判定定理和性質定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現(xiàn)了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。

  二、重視學生數感的培養(yǎng)呼應了課改的理念

  數感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數感,不僅會對數學知識反應靈敏,更會在生活中不知不覺運用數學思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導,學生發(fā)現(xiàn)完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結規(guī)律,也是對學生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結論,這個結論往往是刻骨銘心的,長此以往,對數和形的感覺會越來越好。

數學初中教案7

  教學目標

  1.了解公式的意義,使學生能用公式解決簡單的實際問題;

  2.初步培養(yǎng)學生觀察、分析及概括的能力;

  3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

  教學建議

  一、教學重點、難點

  重點:通過具體例子了解公式、應用公式。

  難點:從實際問題中發(fā)現(xiàn)數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發(fā),用數學方法歸納出來。用這些抽象出的.具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

  三、知識結構

  本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

  2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

  3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規(guī)律,依據規(guī)律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

數學初中教案8

  教學目標

  1.知識與技能

  ① 相似三角形對應高的比,對應角的比,對應叫平分線的比和對應中線的比和相似比的關系。

 、 利用相似三角形的性質解決一些實際問題。

  2.情感與態(tài)度

 、傧嗨迫切沃袑段的比和相似比的關系,培養(yǎng)學生的探索精神和合作意識。

 、 通過運用相似三角形的性質,增強學生的應用意識

  重點與難點

  重點:相似三角形中對應線段比值的推倒,運用相似三角形的性質解決實際問題。

  難點:相似三角形的性質的運用。

  教學思考

  通過例題的分析講解,讓學生感受相似三角形的性質在實際生活中的應用。

  解決問題

  在理解并掌握相似三角形對應高的比,對應角平分線的比和對應中線的比都等于相似比的過程中,培養(yǎng)學生利用相似三角形的性質解決現(xiàn)實問題的意識和應用能力

  教學方法

  引導啟發(fā)式

  課前準備

  幻燈片

  教學設計

  教師活動 學生活動

  一、創(chuàng)設問題情境,引入新課

  帶領學生復習相似多邊形的性質及相似三角形的`性質,并提出疑問“在兩個相似三角形中,是否只有對應角相等,對應邊成比例這個性質?”從而引導學生探究相似三角形的其他性質。

  認真聽課、思考、回答老師提出的問題 。

  二、新課講解

  1、 做一做

  以實際問題做引例,初步讓學生感知相似三角形對應高的比和相似比的關系。

  鉗工小王準備按照比例尺為3∶4的圖紙制作三角形零件,圖紙上的△ABC表示該零件的橫斷面△ABC,CD和CD分別是它們的高.

 。1) , , 各等于多少?

 。2)△ABC與△ABC相似嗎?如果相似,請說明理由,并指出它們的相似比.

 。3)請你在圖4-38中再找出一對相似三角形.

 。4) 等于多少?你是怎么做的?與同伴交流.

  閱讀課本材料,弄清題意,根據已有的經驗積極思考,動手操作畫圖,在練習本上作答。

  依次回答課本提出的4個問題并加以思考

  2、議一議

  根據上面的引例讓學生猜測,證明相似三角形對應高的比,對應角平分線的比和對應中線的比都等于相似比。

  已知△ABC∽△ABC,△ABC與△ABC的相似比為k.

 。1)如果CD和CD是它們的對應高,那么 等于多少?

 。2)如果CD和CD是它們的對應角平分線,那么 等于多少?如果CD和CD是它們的對應中線呢?

  學生經歷觀察,推證、討論,交流后,獨立回答。

  3、教師歸納

  總結相似三角形的性質:

  相似三角形對應高的比、對應角平分線的比和對應中線的比都等于相似比。

  學生理解、熟記。

  歸納、類比加深對相似性質的理解

  三、課堂練習:

  例題講解,利用相似三角形的性質解決一些問題。

  如圖所示,在等腰三角形ABC中,底邊BC=60 cm,高AD=40 cm,四邊形PQRS是正方形.

 。1) △ASR與△ABC相似嗎?為什么?

 。2) 求正方形PQRS的邊長.

  閱讀例題材料,弄懂題意,然后運用所學知識作答。寫出解題過程.

  四、探索活動:

  如圖,AD,AD分別是△ABC和△ABC的角平分線,且AB:AB=BD:BD=AD:AD,你認為△ABC∽△ABC嗎?

  針對此題,學生先獨立思考,然后展開小組討論,充分交流后作答。

  五、課時小結

  指導學生結合本節(jié)課的知識點,對學習過程進行總結。

  本節(jié)課主要根據相似三角形的性質和判定判定推導了相似三角形的性質、相似三角形的對應高的比、對應角平分線的比和對應中線的比都等于相似比。

  學生暢所欲言,談學習的體會,遇到的困難以及獲得的啟發(fā)。

  六、布置課后作業(yè):

  課后習題節(jié)選

  獨立完成作業(yè)。

  板書設計

  29.6相似多邊形及其性質

  一、1.做一做

  2.議一議

  3.例題講解

  二、課堂練習

  三、課時小節(jié)

  四、課后作業(yè)

數學初中教案9

  一、教學目標

  1、知識與技能(1)、借助數軸,初步理解絕對值的概念,能求一個數的絕對值,會利用絕對值比較兩個

  負數的大小。 (2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。 2、過程與方法目標:(1)、通過運用“| |”來表示一個數的絕對值,培養(yǎng)學生的數感和符號感,達到發(fā)展學

  生抽象思維的目的(2)、通過探索求一個數絕對值的方法和兩個負數比較大小方法的過程,讓學生學會通過

  觀察,發(fā)現(xiàn)規(guī)律、總結方法,發(fā)展學生的實踐能力,培養(yǎng)創(chuàng)新意識; (3)、通過對“做一做”“議一議” “試一試”的交流和討論,培養(yǎng)學生有條理地用語言

  表達解決問題的方法;通過用絕對值或數軸對兩個負數大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。

  3、情感態(tài)度與價值觀:

  借助數軸解決數學問題,有意識地形成“腦中有圖,心中有數”的數形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數學活動,并在數學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。

  二、教學重點和難點

  理解絕對值的概念;求一個數的絕對值;比較兩個負數的大小。

  三、教學過程:

  1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘) 2.在組長的組織下進行討論、交流。(約5分鐘) 3、小組分任務展示。(約25分鐘) 4、達標檢測。(約5分鐘) 5、總結(約5分鐘)

  四、小組對學案進行分任務展示

  (一)、溫故知新:

  前面我們已經學習了數軸和數軸的三要素,請同學們回想一下什么叫數軸?數軸的三要素什么?

  (二)小組合作交流,探究新知

  1、觀察下圖,回答問題: (五組完成)

  大象距原點多遠?兩只小狗分別距原點多遠?

  歸納:在數軸上,一個數所對應的點與原點的距離叫做這個數的。一個數a的.絕對值記作:.

  4的絕對值記作,它表示在上與的距離,所以| 4|= 。

  2、做一做:

  (1)、求下列各數的絕對值:(四組完成) -1.5,0,-7,2 (2)、求下列各組數的絕對值:(一組完成)

  (1)4,-4; (2) 0.8,-0.8;

  從上面的結果你發(fā)現(xiàn)了什么?

  3、議一議:(八組完成)

  (1)|+2|=,

  1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;

  你能從中發(fā)現(xiàn)什么規(guī)律?

  小結:正數的絕對值是它,負數的絕對值是它的,0的絕對值是。

  4、試一試:(二組完成)

  若字母a表示一個有理數,你知道a的絕對值等于什么嗎?

  (通過上題例子,學生歸納總結出一個數的絕對值與這個數的關系。)

  5:做一做:(三組完成)

  1、( 1 )在數軸上表示下列各數,并比較它們的大。

  - 3,- 1

  ( 2 )求出(1)中各數的絕對值,并比較它們的大小

  ( 3 )你發(fā)現(xiàn)了什么?

  2、比較下列每組數的大小。

  (1) -1和– 5;(五組完成) (2) ?

  (3) -8和-3(七組完成)

  5和- 2.7(六組完成) 6五、達標檢測:

  1:填空:

  絕對值是10的數有( )

  |+15|=( ) |–4|=( )

  | 0 |=( ) | 4 |=( ) 2:判斷(1)、絕對值最小的數是0。( ) (2)、一個數的絕對值一定是正數。( ) (3)、一個數的絕對值不可能是負數。( )

  (4)、互為相反數的兩個數,它們的絕對值一定相等。( ) (5)、一個數的絕對值越大,表示它的點在數軸上離原點越近。( )

  六、總結:

  1絕對值:在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值.

  2.絕對值的性質:正數的絕對值是它本身;

  負數的絕對值是它的相反數; 0的絕對值是0.

  因為正數可用a>0表示,負數可用a<0表示,所以上述三條可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0

  3、會利用絕對值比較兩個負數的大。簝蓚負數比較大小,絕對值大的反而小.

  七、布置作業(yè)

  P50頁,知識技能第1,2題.

數學初中教案10

  一、素質教育目標

  (一)知識教學點:使學生會用列一元二次方程的方法解決有關增長率問題.

 。ǘ┠芰τ柧汓c:進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養(yǎng)學生用數學的意識.

  二、教學重點、難點

  1.教學重點:學會用列方程的方法解決有關增長率問題.

  2.教學難點:有關增長率之間的數量關系.下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了.

  三、教學步驟

 。ㄒ唬┟鞔_目標.

 。ǘ┱w感知

 。ㄈ┲攸c、難點的學習和目標完成過程

  1.復習提問

 。1)原產量+增產量=實際產量.

 。2)單位時間增產量=原產量×增長率.

 。3)實際產量=原產量×(1+增長率).

  2.例1 某鋼鐵廠去年一月份某種鋼的產量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?

  分析:設平均每月的增長率為x.

  則2月份的產量是5000+5000x=5000(1+x)(噸).

  3月份的產量是[5000(1+x)+5000(1+x)x]

  =5000(1+x)2(噸).

  解:設平均每月的增長率為x,據題意得:

  5000(1+x)2=7200

 。1+x)2=1。44

  1+x=±1。2.

  x1=0。2,x2=-2。2(不合題意,舍去).

  取x=0。2=20%.

  教師引導,點撥、板書,學生回答.

  注意以下幾個問題:

 。1)為計算簡便、直接求得,可以直接設增長的百分率為x.

 。2)認真審題,弄清基數,增長了,增長到等詞語的關系.

 。3)用直接開平方法做簡單,不要將括號打開.

  練習1.教材P。42中5.

  學生分析題意,板書,筆答,評價.

  練習2.若設每年平均增長的百分數為x,分別列出下面幾個問題的方程.

 。1)某工廠用二年時間把總產值增加到原來的b倍,求每年平均增長的`百分率.

 。1+x)2=b(把原來的總產值看作是1.)

 。2)某工廠用兩年時間把總產值由a萬元增加到b萬元,求每年平均增長的百分數.

 。╝(1+x)2=b)

 。3)某工廠用兩年時間把總產值增加了原來的b倍,求每年增長的百分數.

 。ǎ1+x)2=b+1把原來的總產值看作是1.)

  以上學生回答,教師點撥.引導學生總結下面的規(guī)律:

  設某產量原來的產值是a,平均每次增長的百分率為x,則增長一次后的產值為a(1+x),增長兩次后的產值為a(1+x)2 ,…………增長n次后的產值為S=a(1+x)n.

  規(guī)律的得出,使學生對此類問題能居高臨下,同時培養(yǎng)學生的探索精神和創(chuàng)造能力.

  例2 某產品原來每件600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩個降價的百分數相同,求每次降價百分之幾?

  分析:設每次降價為x.

  第一次降價后,每件為600-600x=600(1-x)(元).

  第二次降價后,每件為600(1-x)-600(1-x)x

  =600(1-x)2(元).

  解:設每次降價為x,據題意得

  600(1-x)2=384.

  答:平均每次降價為20%.

  教師引導學生分析完畢,學生板書,筆答,評價,對比,總結.

  引導學生對比“增長”、“下降”的區(qū)別.如果設平均每次增長或下降為x,則產值a經過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).

 。ㄋ模┛偨Y、擴展

  1.善于將實際問題轉化為數學問題,嚴格審題,弄清各數據相互關系,正確布列方程.培養(yǎng)學生用數學的意識以及滲透轉化和方程的思想方法.

  2.在解方程時,注意巧算;注意方程兩根的取舍問題.

  3.我們只學習一元一次方程,一元二次方程的解法,所以只求到兩年的增長率.3年、4年……,n年,應該說按照規(guī)律我們可以列出方程,隨著知識的增加,我們也將會解這些方程.

  四、布置作業(yè)

  教材P。42中A8

  五、板書設計

  12。6 一元二次方程應用(三)

  1.數量關系:例1……例2……

  (1)原產量+增產量=實際產量分析:……分析……

 。2)單位時間增產量=原產量×增長率解……解……

 。3)實際產量=原產量(1+增長率)

  2.最后產值、基數、平均增長率、時間

  的基本關系:

  M=m(1+x)n n為時間

  M為最后產量,m為基數,x為平均增長率

  12.6 一元二次方程的應用(三)

  一、素質教育目標

 。ㄒ唬┲R教學點:使學生會用列一元二次方程的方法解決有關增長率問題.

 。ǘ┠芰τ柧汓c:進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養(yǎng)學生用數學的意識.

  二、教學重點、難點

  1.教學重點:學會用列方程的方法解決有關增長率問題.

  2.教學難點:有關增長率之間的數量關系.下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了.

  三、教學步驟

 。ㄒ唬┟鞔_目標.

 。ǘ┱w感知

 。ㄈ┲攸c、難點的學習和目標完成過程

  1.復習提問

  (1)原產量+增產量=實際產量.

 。2)單位時間增產量=原產量×增長率.

 。3)實際產量=原產量×(1+增長率).

  2.例1 某鋼鐵廠去年一月份某種鋼的產量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?

  分析:設平均每月的增長率為x.

  則2月份的產量是5000+5000x=5000(1+x)(噸).

  3月份的產量是[5000(1+x)+5000(1+x)x]

  =5000(1+x)2(噸).

  解:設平均每月的增長率為x,據題意得:

  5000(1+x)2=7200

 。1+x)2=1。44

  1+x=±1。2.

  x1=0。2,x2=-2。2(不合題意,舍去).

  取x=0。2=20%.

  教師引導,點撥、板書,學生回答.

  注意以下幾個問題:

 。1)為計算簡便、直接求得,可以直接設增長的百分率為x.

 。2)認真審題,弄清基數,增長了,增長到等詞語的關系.

  (3)用直接開平方法做簡單,不要將括號打開.

  練習1.教材P。42中5.

  學生分析題意,板書,筆答,評價.

  練習2.若設每年平均增長的百分數為x,分別列出下面幾個問題的方程.

 。1)某工廠用二年時間把總產值增加到原來的b倍,求每年平均增長的百分率.

 。1+x)2=b(把原來的總產值看作是1.)

  (2)某工廠用兩年時間把總產值由a萬元增加到b萬元,求每年平均增長的百分數.

 。╝(1+x)2=b)

 。3)某工廠用兩年時間把總產值增加了原來的b倍,求每年增長的百分數.

 。ǎ1+x)2=b+1把原來的總產值看作是1.)

  以上學生回答,教師點撥.引導學生總結下面的規(guī)律:

  設某產量原來的產值是a,平均每次增長的百分率為x,則增長一次后的產值為a(1+x),增長兩次后的產值為a(1+x)2 ,…………增長n次后的產值為S=a(1+x)n.

  規(guī)律的得出,使學生對此類問題能居高臨下,同時培養(yǎng)學生的探索精神和創(chuàng)造能力.

  例2 某產品原來每件600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩個降價的百分數相同,求每次降價百分之幾?

  分析:設每次降價為x.

  第一次降價后,每件為600-600x=600(1-x)(元).

  第二次降價后,每件為600(1-x)-600(1-x)x

  =600(1-x)2(元).

  解:設每次降價為x,據題意得

  600(1-x)2=384.

  答:平均每次降價為20%.

  教師引導學生分析完畢,學生板書,筆答,評價,對比,總結.

  引導學生對比“增長”、“下降”的區(qū)別.如果設平均每次增長或下降為x,則產值a經過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).

 。ㄋ模┛偨Y、擴展

  1.善于將實際問題轉化為數學問題,嚴格審題,弄清各數據相互關系,正確布列方程.培養(yǎng)學生用數學的意識以及滲透轉化和方程的思想方法.

  2.在解方程時,注意巧算;注意方程兩根的取舍問題.

  3.我們只學習一元一次方程,一元二次方程的解法,所以只求到兩年的增長率.3年、4年……,n年,應該說按照規(guī)律我們可以列出方程,隨著知識的增加,我們也將會解這些方程.

  四、布置作業(yè)

  教材P。42中A8

  五、板書設計

  12。6 一元二次方程應用(三)

  1.數量關系:例1……例2……

 。1)原產量+增產量=實際產量分析:……分析……

 。2)單位時間增產量=原產量×增長率解……解……

 。3)實際產量=原產量(1+增長率)

  2.最后產值、基數、平均增長率、時間的基本關系:

  M=m(1+x)n n為時間

  M為最后產量,m為基數,x為平均增長率

數學初中教案11

  一、教學目的:

  1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;

  2.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力。

  二、重點、難點

  1.教學重點:菱形的兩個判定方法。

  2.教學難點:判定方法的證明方法及運用。

  三、例題的意圖分析

  本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算。這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成。程度好一些的班級,可以選講例3。

  四、課堂引入

  1.復習

  (1)菱形的定義:一組鄰邊相等的平行四邊形;

  (2)菱形的性質1菱形的四條邊都相等;

  性質2菱形的對角線互相平分,并且每條對角線平分一組對角;

  (3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)

  2.【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?

  3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形。轉動木條,這個四邊形什么時候變成菱形?

  通過演示,容易得到:

  菱形判定方法1對角線互相垂直的平行四邊形是菱形。

  注意此方法包括兩個條件:

  (1)是一個平行四邊形;

  (2)兩條對角線互相垂直。

  通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的`方法:

  菱形判定方法2四邊都相等的四邊形是菱形。

  五、例習題分析

  例1 (教材P109的例3)略

  例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F。

  求證:四邊形AFCE是菱形。

  證明:∵四邊形ABCD是平行四邊形,

  ∴ AE∥FC。

  ∴ ∠1=∠2。

  又∠AOE=∠COF,AO=CO,

  ∴ △AOE≌△COF。

  ∴ EO=FO。

  ∴四邊形AFCE是平行四邊形。

  又EF⊥AC,

  ∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形)。

  ※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F。

  求證:四邊形CEHF為菱形。

  略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF。

  所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形。

  六、隨堂練習

  1.填空:

  (1)對角線互相平分的四邊形是;

  (2)對角線互相垂直平分的四邊形是________;

  (3)對角線相等且互相平分的四邊形是________;

  (4)兩組對邊分別平行,且對角線的四邊形是菱形。

  2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm。

  3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

  七、課后練習

  1.下列條件中,能判定四邊形是菱形的是( )。

  (A)兩條對角線相等

  (B)兩條對角線互相垂直

  (C)兩條對角線相等且互相垂直

  (D)兩條對角線互相垂直平分

  2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC。求證:四邊形MEND是菱形.

  3.做一做:

  設計一個由菱形組成的花邊圖案,花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點,畫出花邊圖形。

數學初中教案12

  教學目標:

  1、引導同學們領略數學隱藏在生活中的迷人之處;

  2、培養(yǎng)同學們對數學的興趣。

  教學內容:

  生活中的數學。

  教學方法:

  啟發(fā)探索、小游戲

  教具安排:

  多媒體、剪紙、小剪刀三把

  教學過程:

  師:同學們,從小學到現(xiàn)在我們都在跟數學打交道,能說說大家對數學的感受嗎?

  學生討論。

  師:同學們,不管以前你們喜不喜歡數學,但老師要告訴大家,其實數學很有趣,它不僅出現(xiàn)在我們的課本,更隱藏在生活的每個角落,只要我們仔細探究,就會發(fā)現(xiàn)它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數學,與數學成為好朋友,好好領略好朋友帶給我們的美的享受。事不宜遲,現(xiàn)在我們馬上開始我們的數學探究之旅。首先,我們來玩?zhèn)小游戲:

  請大家拿出筆和紙,根據下面的步驟來操作,你會有驚人的發(fā)現(xiàn)。(PPT演示)

  [1]首先,隨意挑一個數字(0、1、2、3、4、5、6、7)

  [2]把這個數字乘上2

  [3]然后加上5

  [4]再乘以50

  [5]如果你今年的生日已經過了,把得到的數目加上1759;如果還沒過,加1758

  [6]最后一個步驟,用這個數目減去你出生的那一年(公元的)

  師:發(fā)現(xiàn)了什么?第一個數字是不是你一開始選擇的數字呢?那接下來的兩個呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細想想自然就明白啦,這就是數學的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(PPT演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個島和河岸,如圖所示:

  網路圖

  居民們的一項普遍愛好是嘗試在一次行走中跨過所有的7座橋而不

  重復經過任何一座橋。同學們,你們能幫助他們實現(xiàn)這個想法嗎?拿出紙和筆設計的路線。

  學生思考設計。

  師:同學們行嗎?事實上,著名數學家歐拉已經證明不能解決這個問題了,可是這是為什么呢?別急,我們繼續(xù)看下去。

  1944年的空襲,毀壞了大多數的舊橋,格尼斯堡在河上重新建了5座橋,如圖:

  B

  現(xiàn)在請同學們再嘗試一下,在一次行走中跨過所有的5座橋而不重復經過任何一座橋。

  學生思考。

  師:同學們,這次行得通了吧?那么為什么呢?有沒有同學可以說一下他的想法?

  其實,我們的歐拉大師經過研究大量類似的網絡,證明了這樣的事實(PPT演示):要走完一條路線而其中每一段行程只許經過一次,只有當奇數結點的'數目是0或2時才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個網絡。

  他還發(fā)現(xiàn):如果有兩個奇結點,那么經過整個路線的形成必須從一個

  奇結點開始,到另一個奇結點結束。

  師:我們來看一下是不是這樣的?第一個圖奇結點的個數為3,第二個圖奇結點的個數減少到2個了,看來真的是這樣的。

  現(xiàn)在請同學們自己在練習本上解決這個問題:(PPT演示)

  下面是一幅農場的大門的圖。如果筆不離紙,又不重復經過任一條線,有沒有可能畫成它?

  學生思考討論。

  師:我們看到它的奇結點個數為4,由歐拉的證明我們知道不能一筆畫成。

  那如果農場主將門的形狀做成這樣呢?(PPT演示)

  學生嘗試。

  師:是不是可以啦,為什么呢?

  生:奇結點個數為2.

  師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現(xiàn)實生活中具有很重要的實用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節(jié)省很多寶貴的時間?磥,數學并不像

  某些時候想的那樣沒什么用處了吧?

  下面我們繼續(xù)我們的奧秘之類吧。

  今天我們班有同學生日嗎?如果你生日,爸爸媽媽給你買了一個正方形的蛋糕,你要把它切成不同形狀的平均大小的7塊,怎么切?能行嗎?嘗試一下。

  其實很簡單,你只需要把正方形的周邊(即周長)分成7個等長,定出蛋糕的中心,從周邊劃分等長的標記切向中電,(如圖所示)即可。

  為什么呢?這里我們用到三角形等高等底面積相等的性質。

  吃完了蛋糕,我們來觀賞一下百合花。(PPT演示):

  一個鄉(xiāng)村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個池塘,那么池塘只被百合花覆蓋一半時是多少天呢?同學們,你知道嗎?

  學生討論。

  師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數學我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數學是多么聰慧、多么神奇的家伙!

  其實,除了以上我們看到的一些有趣的數學影子外,我們的日常生

數學初中教案13

  湖北省咸寧市咸安區(qū)實驗中學 章福枝

  一、內容與內容解析(一)內容

  一元一次不等式組的概念及解法

 。ǘ﹥热萁馕

  上節(jié)課學習了一元一次不等式,知道了一元一次不等式的有關概念及解法,本節(jié)課主要是學習一元一次不等式組及其解法,這是學習利用一元一次不等式組解決實際問題的關鍵.教材通過一個實例入手,引出要解決的問題,必須同時滿足兩個不等式,讓學生經歷通過具體問題抽象出不等式組的過程,進而通過一元一次不等式來類推學習一元一次不等式組、一元一次不等式組解集、解一元一次不等式組這些概念.學習不等式組時,我們可以類比方程組、方程組的解來理解不等式組、不等式組的解集的概念.求不等式組的解集時,利用數軸很直觀,這是一種數與形結合的思想方法,不僅現(xiàn)在有用,今后我們還會有更深的體驗. 基于以上的分析,本節(jié)課的教學重點:一元一次不等式組的解法.

  二、目標及目標解析(一)目標

 。1)理解一元一次不等式組、一元一次不等式組的解集等概念.(2)會解一元一次不等式組,并會用數軸確定解集.(二)目標解析

  達到目標(1)的標志是:學生能說出一元一次不等式組的特征.

  達到目標(2)的標志是:學生能解一元一次不等式組,能在數軸上確定不等式組的解集,并獲得解一元一次不等式組的步驟.

  三、教學問題診斷分析 通過前面的學習,學生已經掌握一元一次不等式的概念及解法,但是對于學生用數軸來表示不等式組的解集時還不夠熟練,理解還不夠深刻. 本節(jié)課的教學難點:在數軸上找公共部分,確定不等式組的解集.

  四、教學過程設計

 。ㄒ唬┨岢鰡栴} 形成概念

  問題:用每分鐘可抽30噸水的抽水機來抽污水管道里的積存污水,估計積存的污水超過1200噸而不足1500噸,那么將污水抽完所用的時間的范圍是什么? 設問(1):依據題意,你能得出幾個不等關系? 設問(2):設抽完污水所用的時間還是范圍?

  小組討論,交流意見,再獨立設未知數,列出所用的不等關系. 教師追問(1):類比方程組的概念,說出什么是一元一次不等式組?怎樣表示? 學生自學概念,說出表示方法.教師追問(2):類比方程組的解怎樣確定不等式組中x的取值范圍? 學生經過小組討論,老師點撥:不等式組中各個不等式解集的公共部分就是不等式組x的取值范圍. 教師追問(3):怎樣解不等式,并用數軸表示解集? 學生獨立完成. 教師追問(4):通過數軸,怎樣得出不等式組的解集? 學生獨立完成,老師點評 教師追問(5):什么是一元一次不等式組的解集?什么是解一元一次不等式組? 學生自學概念.

  設計意圖:培養(yǎng)學生獨立思考、合作交流意識,提高學生的觀察、分析、猜測、概括和自學能力.并且滲透類比思想,得出一元一次不等式組以及其解集的概念,利用數軸的直觀理解不等式解集的意義.

 。ǘ┙夥ㄌ接 步驟歸納 例1 解下列不等式組

  學生嘗試獨立解不等式組,老師強調規(guī)范格式

  設問1:當兩個不等式的解集沒有公共部分,表示什么意思? 設問2:解一元一次不等式組的一般步驟是什么?

  學生總結歸納,老師適當補充,得出解一元一次不等式組的`一般步驟是:(1)求每個不等式的解集;(2)利用數軸找出各個不等式的解集的公共部分;(3)寫出不等式組的解集.

  設計意圖:初步感受解一元一次不等式組的方法和步驟.

 。ㄈ⿷锰岣 深化認知

  例2 x取那些整數值時,不等式5x+2>3(x-1)與

  都成立?

  設問1:不等式都成立表示什么意思? 小組討論

  設問2:要求x取哪些整數值,要先解決什么問題? 學生先合作交流,再獨立解不等式組 設問3.怎樣取值?

  學生在不等式組的解集范圍內,取整數值.老師強調即求不等式組的特殊解. 設計意圖:通過例2可以讓學生構建不等式組,并解出不等式組,同時根據解集求出不等式組的特殊解,這是對學生解不等式組的一次提高訓練.

 。ㄋ模w納總結 反思提高

  教師與學生一起回顧本節(jié)課所學主要內容,并請學生回答以下問題.(1)什么是一元一次不等式組?什么是一元一次不等式組的解集?(2)解一元一次不等式組的一般步驟?

 。3)一元一次不等式組解集的一般規(guī)律是什么?

  設計意圖:通過問題歸納總結本節(jié)課所學的主要內容.

 。ㄎ澹┎贾米鳂I(yè) 課外反饋 教科書習題9.3第1,2,3題

  設計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當的調整.

數學初中教案14

  教學目標:

  1、會用待定系數法求反比例函數的解析式。

  2、通過實例進一步加深對反比例函數的認識,能結合具體情境,體會反比例函數的意義,理解比例系數的具體的意義。

  3、會通過已知自變量的值求相應的反比例函數的值。運用已知反比例函數的值求相應自變量的值解決一些簡單的問題。

  重點:用待定系數法求反比例函數的解析式。

  難點:例3要用科學知識,又要用不等式的知識,學生不易理解。

  教學過程:

  一。復習

  1、反比例函數的定義:

  判斷下列說法是否正確(對‖√‖,錯‖3‖)

 。1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數。(2)圓的'面積公式s??r2中,s與r成正比例。(3)矩形的長為a,寬為b,周長為C,當C為常量時,a是b的反比例函數。方形的邊長為x,高為y,當其體積V為常量時,y是x的反比例函數。(4)一個正四棱柱的底面正

  定時,商和除數成反比例。(5)當被除數(不為零)一

 。6)計劃修建鐵路1200km,則鋪軌天數y(d)是每日鋪軌量x(km/d)的反比例函數。

  2、思考:如何確定反比例函數的解析式?

 。1)已知y是x的反比例函數,比例系數是3,則函數解析式是_______

 。2)當m為何值時,函數4是反比例函數,并求出其函數解析式.y?2m?2關鍵是確定比例系數!x

  二。新課

  1、例2:已知變量y與x成反比例,且當x=2時y=9,寫出y與x之間的函數解析式和自變量的取值范圍。小結:要確定一個反比例函數y?k的解析式,只需求出比例系數k。如果已知一對自變量與函數的對應值,x

  3時,y=2,求這個函數的解析式和自變量的取值范圍。4就可以先求出比例系數,然后寫出所要求的反比例函數。2.練習:已知y是關于x的反比例函數,當x=?

  3、說一說它們的求法:

 。1)已知變量y與x-5成反比例,且當x=2時y=9,寫出y與x之間的函數解析式。

  (2)已知變量y-1與x成反比例,且當x=2時y=9,寫出y與x之間的函數解析式。

  4、例3、設汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。

  (1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關于R的函數解析式,并說明比例系數的實際意義。

  (2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發(fā)生什么變化?

  在例3的教學中可作如下啟發(fā):

  (1)電流、電阻、電壓之間有何關系?

  (2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數關系?

 。3)前燈的亮度取決于哪個變量的大?如何決定?

  先讓學生嘗試練習,后師生一起點評。

  三。鞏固練習:

  1、當質量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3

 。1)求p與V的函數關系式,并指出自變量的取值范圍。

  (2)求V=9m3時,二氧化碳的密度。

  四。拓展:

  1、已知y與z成正比例,z與x成反比例,當x=-4時,z=3,y=-4.求:

  (1)Y關于x的函數解析式;

 。2)當z=-1時,x,y的值。

  2、已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的

  值都等于10,求y與x之間的函數關系。

  五。交流反思

  求反比例函數的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數關系,如例2;另一種是變量之間的關系由已學的數量關系直接給出,如例3中的I?

  六。布置作業(yè):P4B組

數學初中教案15

  教學背景:

  配方法是初中數學一種很重要的思想方法,具有舉足輕重的作用和地位,在中考中頻頻出現(xiàn),是初中生必備的一種數學能力。在解一元二次方程,二次函數,因式分解,解特殊方程,有關最大或最小值題目,代數式求值中有廣泛應用。

  教學目標:

  1、了解配方法的定義;

  2、理解并掌握配方法的應用;

  教學方法:

  視頻教學、例題講解

  教學過程:

  一、 溫故知新

  什么是配方法?

  配方法是指通過配、湊等手段得到完全平方形式,再利用完全平方項是非負數等性質,達到增加題目的條件等目的。

  二、 學習新知

  展示配方法的四個方面應用:

  (一)、配方法解一元二次方程

  例1:用配方法解方程3x2+8x-3=0.

  步驟:

  1.化1:把二次項系數化為1;

  2.移項:把常數項移到方程的右邊;

  3.配方:方程兩邊都加上一次項系數絕對值一半的平方;

  4.變形:方程左邊分解因式,右邊合并同類;

  5.開方:根據平方根意義,方程兩邊開平方;

  6.求解:解一元一次方程;

  7.定解:寫出原方程的解.

  重點講解第一和第三步驟

  (二)、配方法求二次函數的最值

  例2:已知x是實數,求y=x2-6x+10的最值.

  分析:配方成頂點式即可求出函數最值.

  (三)、配方法求代數式的最值

  例3:證明無論x為何實數,代數式2x2-3x+10的值恒大于零.

  分析:將這個二次三項式配方,就可判斷其最值是什么.

  接著提問:你能求出此代數式的最值嗎?

  (四)、配方法解特殊方程

  例4:已知方程x2 -10x +y2-8y+41=0.求x+y值.

  分析:先解方程求出x和y值,將41拆成25+16,等式左邊配方湊成兩完全平方式,于是可化為兩數平方和為0的式子,從而分別求出x、y的值.

  三、 回味無窮

  1、配方法的`應用

  一、配方法解一元二次方程

  二、配方法求二次函數的最值

  三、配方法求代數式的最值

  四、配方法解特殊方程

  2、思考:上面配方法的四個應用中,哪些是“配”,哪些是“湊”呢?

  第一、二、三方面關鍵在“配”,第四方面關鍵在“湊”.

  四、作業(yè)設計:見進階練習

  五、教學總結:

  配方法在初中數學中占有非常重要的地位,是恒等變形的重要手段,是研究相等關系,討論不等關系的常用技巧,是挖掘題目當中隱含條件的有力工具,同學們一定要把它學好。

【數學初中教案】相關文章:

初中數學 教案02-24

初中數學圓教案04-17

初中數學優(yōu)秀教案10-26

初中數學命題教案02-23

初中數學實數教案01-06

初中數學《梯形》教案08-26

初中數學教案08-12

初中數學矩形教案12-30

初中數學《圓 》教案12-30