初中數(shù)學教案設(shè)計
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.使學生理解多項式的概念.
2.使學生能準確地確定一個多項式的次數(shù)和項數(shù).
3.能正確區(qū)分單項式和多項式.
。ǘ┠芰τ柧汓c
通過區(qū)別單項式與多項式,培養(yǎng)學生發(fā)散思維.
(三)德育滲透點
在本節(jié)教學中向?qū)W生滲透數(shù)學知識來源于生活,又為生活而服務的辯證思想.
。ㄋ模┟烙凉B透點
單項式和多項式在前二章,特別是第一章已有新接觸,本節(jié)課來研究多項式的概念可謂水到渠成,體現(xiàn)了數(shù)學的結(jié)構(gòu)美
二、學法引導
1.教學方法:采用對比法,以訓練為主,注重嘗試指導.
2.學生學法:觀察分析→多項式有關(guān)概念→練習鞏固
三、重點、難點、疑點及解決辦法
1.重點:多項式的概念及單項式的聯(lián)系與區(qū)別.
2.難點:多項式的次數(shù)的確定,以及多項式與單項式的聯(lián)系與區(qū)別.
3.疑點:多項式中各項的符號問題.
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
教師出示探索性練習,學生分析討論得出多項式有關(guān)概念,教師出示鞏固性練習,學生多種形式完成.
七、教學步驟
。ㄒ唬⿵土曇,創(chuàng)設(shè)情境
師:上節(jié)課我們學習了單項式的有關(guān)概念,同學們看下面一些問題.
。ǔ鍪就队1)
1.下列代數(shù)式中,哪些是單項式?是單項式的請指出它的系數(shù)與次數(shù).
, , ,2, , , ,
2.圓的半徑為 ,則半圓的面積為_____________,半圓的總長為_____________.
學生活動:回答上述兩個問題,可以進行搶答,看誰想的全面,回答的準確,教師對回答準確、速度快的給予表揚和鼓勵.
【教法說明】讓學生通過1題回顧有關(guān)單項式的一些知識點,再通過2題中半圓周長為 很自然地引出本節(jié)內(nèi)容.
師:上述2題中,表示半圓面積的代數(shù)式是單項式嗎?為什么?表示半圓的周長的式子呢?
學生活動:同座進行討論,然后選代表回答.
師:誰能把1題中不是單項式的式子讀出來?(師做相應板書)
學生活動:小組討論, 、 , , 對于這些代數(shù)式的結(jié)構(gòu)特點,由小組選代表說明,若不完整,其他同學可做補充.
。ǘ┨剿餍轮v授新課
師:像以上這樣的式子叫多項式,這節(jié)課我們就研究多項式,上面幾個式子都是多項式.
。郯鍟3.1整式(多項式)
學生活動:討論歸納什么叫多項式.可讓學生互相補充.
教師概括并板書
。郯鍟荻囗検剑簬讉單項式的和叫多項式.
師:強調(diào)每個單項式的符號問題,使學生引起注意.
。ǔ鍪就队2)
練習:下裂代數(shù)式 , , , , , ,
, , 中,是多項式的有:
___________________________________________________________.
學生活動:學生搶答以上問題,然后每個學生在練習本上寫出兩個多項式,同桌互相交換打分,有疑問的提出再討論.
【教法說明】通過觀察式子特點,討論歸納多項式的概念,體現(xiàn)了學生的主體作用和參與意識.多項式的概念是本節(jié)教學重點,為使學生對概念真正理解,讓學生每個人寫出兩個多項式,可及時反饋學生掌握知識中存在的問題,以便及時糾正.
師:提出問題,多項式 、 , , 各是由幾個單項式相加而得到的?每個單項式各指的是誰?各是幾次單項式?引導學生回答,教師根據(jù)學生回答,給予肯定、否定與糾正.
師:在 中,是兩個單項式相加得到,就叫做二項式,兩個單項式中, 次數(shù)是1, 次數(shù)是1,最高次數(shù)是一次,所以我們說這個多項式的次數(shù)是一次,整個式子叫做一次二項式.
。郯鍟
學生活動:同桌討論,, , ,應怎樣稱謂,然后找學生回答.
師:給予歸納,并做適當板書:
[板書]
學生活動:通過上例,學生討論多項式的項、次數(shù),然后選代表回答.
根據(jù)學生回答,師歸納:
在多項式中,每個單項式叫多項式的項,是幾個單項式的和就叫做幾項式.每一項包含它的符號,如 中, 這一項不是 .多項式里次數(shù)最高的項的次數(shù),就叫做多項式次數(shù),即最高次項是幾次,就叫做幾次多項式,不含字母的項叫做常數(shù)項.
[板書]
【教法說明】通過學生對以上幾個多項式的感知,學生對多項式的特片已有了一定的了解,教師可逐步引導,讓學生自己總結(jié)歸納一些結(jié)論,以訓練學生的口頭表達能力和歸納能力.
(三)嘗試反饋,鞏固練習
。ǔ鍪就队3)
1.填空:
2.填空:
(1) 是_________次__________項式; 是_________次_________項式; 的常數(shù)項是___________.
。2) 是_________次________項式,最高次數(shù)是___________,最高次項的系數(shù)是__________,常數(shù)項是___________.
學生活動:1題搶答,同桌同學給予肯定或否定,且肯定地說出依據(jù),否定的再說出正確答案;2題學生觀察后,在練習本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對所做答案給予肯定或更正.
【教法說明】在此組練習題中,1題目的是以填表的形式感知一個多項式就是單項式的和,多項式的項就是單項式;使學生能進一步了解多項式與單項式的關(guān)系,避免死記硬背概念,而不能準確應用于解題中的弊。2題是在理解概念和完成1題單一問題的基礎(chǔ)上進行綜合訓練,使學生逐步學會使用數(shù)學語言.
。ㄋ模w納小結(jié)
師:今天我們學習了《整式》一節(jié)中“多項式”的有關(guān)概念;在掌握多項式概念時,要注意它的項數(shù)和次數(shù).前面我們還學習了單項式,掌握單項式時要注意它的系數(shù)和次數(shù).
歸納:單項式和多項式統(tǒng)稱為整式.
[板書]
說明:教師邊小結(jié)邊板書出多項式、單項式,然后再提出它們統(tǒng)稱為整式,并做了述板書,使所學知識納入知識系統(tǒng).
鞏固練習:
(出示投影4)
下列各代數(shù)式:0, , , , , , 中,單項式有__________,多項式有____________,整式有_____________.
學生活動:觀察后學生回答,互相補充、糾正,提醒學生不能遺漏.
【教法說明】數(shù)學要領(lǐng)重在于應用,通過上題的訓練,可使學生很清楚地了解單項式、多項式的區(qū)別與聯(lián)系,它們與整式的關(guān)系.
。ㄎ澹┳兪接柧,培養(yǎng)能力
。ǔ鍪就队5)
1.單項式 , , 的和_________,它是__________次__________項式.
2. 是_______次________項式 是__________次_________項式,它的常數(shù)項_________.
3. 是________次________項式,最高次項是_________,最高次項的.系數(shù)是_________,常數(shù)項是__________.
4. 的2倍與 的平方的 的和,用代數(shù)式表示__________,它是__________(填單項式或多項式).
學生活動:每個學生先獨立在練習本上完成,然后小組互相交流補充,最后小組選出代表發(fā)言.
師:做肯定或否定,強調(diào)3題中最高次項的系數(shù)是 , 是一個數(shù)字,不是字母,因為它只能代表圓周率這一個數(shù)值,而一個字母是可以取不同的值的.
【教法說明】本組是在前面掌握了本節(jié)課基本知識后安排的一組訓練題,目的是使學生進一步理解多項式的次數(shù)與項數(shù),特別是對 這個數(shù)字要有一個明確的認識.
自編題目練習:
每個學生寫出6個整式,并要求既有單項式,又有多項式,然后交給同桌的同學,完成以下任務,①先找出單項式、多項式,②是單項式的寫出系數(shù)與次數(shù),是多項式的寫出是幾次幾項式,最高次數(shù)是什么?常數(shù)項是什么,然后再互相討論對方的解答是否正確.
【教學說明】自編題目的訓練,一是可活躍課堂氣氛,增強了學生的參與意識;二是可以培養(yǎng)學生的發(fā)散思維和逆向思維能力.
師:通過上面編題、解題練習,同學們對整式的概念有了清楚的理解,下面再按老師的要求編題,編一個四次三項式,看誰編的又快又準確,再編一個不高于三次的多項式.
學生活動:學生邊回答師邊板書,然后學生討論是否符合要求.
【教法說明】通過上面訓練,使學生進一步鞏固多項式項數(shù)、次數(shù)的概念,同時也可以培養(yǎng)學生逆向思維的能力.
八、隨堂練習
1.判斷題
(1)-5不是多項式( )
(2) 是二次二項式( )
。3) 是二次三項式( )
。4) 是一次三項式( )
。5) 的最高次項系數(shù)是3( )
2.填空題
(1)把上列代數(shù)式分別填在相應的括號里
, , ,0, , ,
; ;
; ;
.
。2)如果代數(shù)式 是關(guān)于 的三次二項式則 , .
九、布置作業(yè)
。ㄒ唬┍刈鲱}:課本第149頁習題3.1A組12.
。ǘ┻x做題:課本第150頁習題3.1B組3.
十、板書設(shè)計
隨堂練習答案
1.√ × × √ ×
2.(1)單項式 ,多項式 ;
整式 ;
二項式 ;
三次三項式 ;
(2) , .
作業(yè)答案
教材P.149中A組12題:(1)三次二項式 (2)二次三項式
(3)一次二項式 (4)四次三項式
【初中數(shù)學教案設(shè)計】相關(guān)文章:
初中數(shù)學教案設(shè)計09-29
關(guān)于初中數(shù)學教案設(shè)計01-15
初中數(shù)學《定義與命題》教案設(shè)計11-23
初中數(shù)學《等腰梯形的判定》教案設(shè)計08-26