久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

初中數學教案:菱形

時間:2023-05-06 17:37:04 初中數學教案 我要投稿
  • 相關推薦

初中數學教案:菱形

  一、教學目的:

初中數學教案:菱形

  1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;

  2.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  二、重點、難點

  1.教學重點:菱形的兩個判定方法.

  2.教學難點:判定方法的證明方法及運用.

  三、例題的意圖分析

  本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.

  四、課堂引入

  1.復習

  (1)菱形的定義:一組鄰邊相等的平行四邊形;

 。2)菱形的性質1 菱形的四條邊都相等;

  性質2 菱形的對角線互相平分,并且每條對角線平分一組對角;

 。3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)

  2.【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?

  3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什么時候變成菱形?

  通過演示,容易得到:

  菱形判定方法1 對角線互相垂直的平行四邊形是菱形.

  注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.

  通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:

  菱形判定方法2 四邊都相等的四邊形是菱形.

  五、例習題分析

  例1 (教材P109的例3)略

  例2(補充)已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.

  求證:四邊形AFCE是菱形.

  證明:∵ 四邊形ABCD是平行四邊形,

  ∴ AE∥FC.

  ∴ ∠1=∠2.

  又 ∠AOE=∠COF,AO=CO,

  ∴ △AOE≌△COF.

  ∴ EO=FO.

  ∴ 四邊形AFCE是平行四邊形.

  又 EF⊥AC,

  ∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形).

  ※例3(選講) 已知:如圖,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.

  求證:四邊形CEHF為菱形.

  略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

  所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.

  六、隨堂練習

  1.填空:

 。1)對角線互相平分的四邊形是 ;

 。2)對角線互相垂直平分的四邊形是________;

 。3)對角線相等且互相平分的四邊形是________;

 。4)兩組對邊分別平行,且對角線 的四邊形是菱形.

  2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.

  3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

  七、課后練習

  1.下列條件中,能判定四邊形是菱形的是 ( ).

 。ˋ)兩條對角線相等 (B)兩條對角線互相垂直

 。–)兩條對角線相等且互相垂直 (D)兩條對角線互相垂直平分

  2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.

  3.做一做:

  設計一個由菱形組成的花邊圖案.花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.

【初中數學教案:菱形】相關文章:

數學教案-菱形05-02

菱形05-02

數學菱形教案12-30

菱形教學反思05-02

菱形的判定和性質05-01

矩形、菱形 習題-104-28

《菱形的判定》教學設計04-30

數學教案-菱形教學示例 第二課時05-02

英語課件《Unit5 on the farm》、數學教案《菱形的性質》等資源已上線04-25

中考數學輔導教案 菱形的判定04-25