久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

“互為反函數(shù)的函數(shù)圖象間的關(guān)系”教學(xué)案例

時(shí)間:2023-05-02 02:13:16 初中數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

“互為反函數(shù)的函數(shù)圖象間的關(guān)系”教學(xué)案例

 

“互為反函數(shù)的函數(shù)圖象間的關(guān)系”教學(xué)案例

一、教學(xué)過程 

1.復(fù)習(xí)。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù)。

2.新課。

先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):

教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學(xué)生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復(fù)了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實(shí)是出在這個地方,那么請同學(xué)再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學(xué)生再次陷入思考,一會兒有學(xué)生舉手。)

師:我們請生4來告訴大家。

生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?

(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

(學(xué)生一時(shí)未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進(jìn)一步明確。)

師:我其實(shí)是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?

(學(xué)生重新開始觀察這兩個函數(shù)的圖象,一會兒有學(xué)生舉手。)

生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。

師:能說說是關(guān)于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

學(xué)生通過移動點(diǎn)A(點(diǎn)B、C隨之移動)后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。

師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。

(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)

還是有部分學(xué)生舉手,因?yàn)樗麄儺嫵隽巳缦聢D象(圖3):

教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學(xué)生一起總結(jié):

點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。

二、反思與點(diǎn)評

1.在開學(xué)初,我就教學(xué)幾何畫板4.0的用法,在教函數(shù)圖象畫法的過程中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫板4.04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4.0進(jìn)行教學(xué)。

2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。

計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。

在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來做數(shù)學(xué),在此過程中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

3.在引出兩個函數(shù)圖象對稱關(guān)系的時(shí)候,問題設(shè)計(jì)不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。

“互為反函數(shù)的函數(shù)圖象間的關(guān)系”教學(xué)案例

【“互為反函數(shù)的函數(shù)圖象間的關(guān)系”教學(xué)案例】相關(guān)文章:

18.2函數(shù)的圖象 教案04-25

高中數(shù)學(xué)函數(shù)的圖象教案12-28

反比例函數(shù)的圖象與性質(zhì)教學(xué)反思(精選15篇)12-13

《正弦型函數(shù)y=Asin(ωx+φ) 的圖象》教案04-25

圖象04-29

18.2函數(shù)的圖象 -平面直角坐標(biāo)系教案04-25

反比例函數(shù)的圖象與性質(zhì)教案范文(通用8篇)04-07

一次函數(shù)的圖象與性質(zhì)說課稿(通用6篇)06-26

人與自然互為存在--人與自然關(guān)系新解04-26

成員間的關(guān)系教學(xué)反思范文04-27