數(shù)學(xué)六年級下冊圓柱的體積教案
作為一無名無私奉獻的教育工作者,很有必要精心設(shè)計一份教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。寫教案需要注意哪些格式呢?下面是小編為大家收集的數(shù)學(xué)六年級下冊圓柱的體積教案,僅供參考,歡迎大家閱讀。
數(shù)學(xué)六年級下冊圓柱的體積教案1
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級下冊《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過程。
2.知道并能記住圓柱的體積公式,并能運用公式進行計算。
3.在自主探究圓柱的體積公式的過程中,體驗、感悟數(shù)學(xué)規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗成功的快樂。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點:掌握和運用圓柱體積計算公式
教學(xué)難點:圓柱體積公式的推導(dǎo)過程
教具學(xué)具準(zhǔn)備:教學(xué)課件、圓柱體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計算公式是如何推導(dǎo)出來的?
(結(jié)合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當(dāng)于圓周長的一半,可以用πR表示,長方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個圓柱體
我們把圓轉(zhuǎn)化成了近似的長方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長方體
、偈窃鯓悠闯傻模
、谟^察是不是標(biāo)準(zhǔn)的長方體?
、垩菔32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3.借鑒圓的面積公式的推導(dǎo)過程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
、倨闯傻拈L方體與原來的圓柱體比較什么變了?什么沒變?
②推導(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的'問題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報。
生匯報師結(jié)合講解板書。
圓柱體積=底面積×高
‖ ‖ ‖
長方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計算下面圓柱的體積。
①底面積24平方厘米,高12厘米
②底面半徑2厘米,高5厘米
③直徑10厘米,高4厘米
④周長18.84厘米,高12厘米
三、課堂檢測
1.判斷
、賵A柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。( )
②圓柱的底面積擴大3倍,體積也擴大3倍。( )
、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
、軋A柱體的底面直徑和高可以相等。( )
、輧蓚圓柱體的底面積相等,體積也一定相等。( )
、抟粋圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。( )
2.聯(lián)系生活實際解決實際問題。
下面的這個杯子能不能裝下這袋奶?
(杯子的數(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)
學(xué)生獨立思考回答后自己做在練習(xí)本上。
3.一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。
、俑采w在這個大棚上的塑料薄膜約有多少平方米?
、诖笈飪(nèi)的空間大約有多大?
獨立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測量圓柱形柱子的體積,測量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書設(shè)計
圓柱體積= 底面積×高
長方體體積=底面積×高
數(shù)學(xué)六年級下冊圓柱的體積教案2
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點:
掌握圓柱體積的計算公式。
教學(xué)難點:
圓柱體積的計算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的'思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補充例題(刪掉)
。1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
(2)指名學(xué)生分別回答下面的問題
、龠@道題已知什么?求什么?
②能不能根據(jù)公式直接計算?
③計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
。3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的.
、賄=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.(刪掉)
(4)做第20頁的“做一做”。
學(xué)生獨立做在練習(xí)本上,做完后集體訂正.
出示一組習(xí)題
一個圓柱的半徑4厘米,高3厘米,體積是多少立方厘米?
一個圓柱的直徑12厘米,高3厘米,體積是多少立方厘米?
一個圓柱的周長12.56厘米,高3厘米,體積是多少立方厘米?
3、引導(dǎo)思考:如果已知圓柱底面半徑,直徑,和底面周長和高,圓柱體積的計算公式是怎樣的?
4、教學(xué)例6
(1)出示例,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)(刪掉)
(1)學(xué)生嘗試完成例6。
①杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、诒拥娜莘e:50.24×10=502.4(cm3)=502.4(ml)
。2)學(xué)生見解例題,師補充
三、鞏固練習(xí)
1、一個圓柱形水桶底面直徑是56厘米,高87厘米,水桶裝多少水?
2、一個圓柱的體積是80立方厘米,底面積是16平方厘米,它的高是多少厘米?
3、一個圓柱形糧囤,從里面量得底面半徑是1.5米,高是2米。如果每立方米約中750千克,這個糧囤能裝多少噸玉米?
4鋼管的長80厘米,外直徑10厘米,內(nèi)直徑8厘米,求它的體積。
板書設(shè)計:
圓柱的體積=底面積×高V=Sh或V=πr2h
例6:
、俦拥牡酌娣e:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
教學(xué)反思:
以舊引新,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。加強直觀操作,培養(yǎng)學(xué)生的動手操作能力。利用“轉(zhuǎn)化思想”的方法把圓柱轉(zhuǎn)化成近似的長方體,通過小組合作實驗推導(dǎo)出圓柱體積的計算方法,使學(xué)生在操作中感知,在觀察中理解,在比較中歸納,發(fā)展了學(xué)生的空間觀念,培養(yǎng)了學(xué)生的動手能力和合作能力。
數(shù)學(xué)六年級下冊圓柱的體積教案3
教學(xué)內(nèi)容:
教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習(xí)二第1~5題。
教學(xué)要求:
1.使學(xué)生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件正確地求出圓柱的體積。
2.培養(yǎng)學(xué)生初步的空間觀念和思維能力;讓學(xué)生認(rèn)識轉(zhuǎn)化的思考方法。
教具準(zhǔn)備:
圓柱體積演示教具。
教學(xué)重點:
理解和掌握圓柱的體積計算公式。
教學(xué)難點:
圓柱體積計算公式的推導(dǎo)。
教學(xué)過程:
一、鋪墊孕伏:
1.求下面各圓的面積(回答)。
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
要求說出解題思路。
2.想一想:學(xué)習(xí)計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。
3.提問:什么叫體積?常用的體積單位有哪些?
4.已知長方體的底面積s和高h(yuǎn),怎樣計算長方體的體積?(板書:長方體的體積=底面積高)
二、自主研究:
1.根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。(板書課題)
2.怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為已學(xué)過的立體圖形來計算呢,現(xiàn)在我們大家一起來討論。
3.公式推導(dǎo)。(可分小組進行)
(1)請同學(xué)指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)
(3)探索求圓柱體積的公式。
根據(jù)圓面積剪、拼轉(zhuǎn)化成長方形的'思路,我們也可以運用切拼轉(zhuǎn)化的方法把圓柱體變成學(xué)過的幾何形體來推導(dǎo)出圓柱的體積計算公式。你能想出怎樣切、拼轉(zhuǎn)化嗎?請同學(xué)們仔細(xì)觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關(guān)系。教師演示圓柱體積公式推導(dǎo)演示教具:把圓柱的底面分成許多相等的扇形(數(shù)量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體。可以想象,分成的扇形越多,拼成的立體圖形就越接近于長方體。
(4)討論并得出結(jié)果。
你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積高)用字母表示: 。(板書:V=Sh)
(5)小結(jié)。
圓柱的體積是怎樣推導(dǎo)出來的?計算圓柱的體積必須知道哪些條件?
4.教學(xué)例1。
出示例1,審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位)
0.9米=90厘米 2490=2160(立方厘米)
5.做練習(xí)二第1題。
讓學(xué)生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?
6.教學(xué)試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學(xué)生做在練習(xí)本上。評講試一試小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。
7. 教學(xué)例2。
出示例2,審題。小組討論計算方法,然后學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位,結(jié)果保留整數(shù)。)
數(shù)學(xué)六年級下冊圓柱的體積教案4
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運用體積公式解決簡單的實際問題。
3、進一步提高學(xué)生解決問題的能力。
教學(xué)重、難點:
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱切割組合模具、小黑板。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
二、探索交流,解決問題
1、計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進行計算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計算它的體積?
(啟發(fā)學(xué)生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實驗?zāi)惆l(fā)現(xiàn)了什么?小組討論:實驗前后,什么變了?什么沒變?討論后,整理出來,再進行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的.面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計算圓柱的體積?
學(xué)生匯報討論結(jié)果。
長方體的體積可以用底面積乘高來計算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書:V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長對解決問題有什么幫助嗎?必須先求出什么?
四:課堂小結(jié):
通過這節(jié)課你學(xué)會了哪些知識,有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
數(shù)學(xué)六年級下冊圓柱的體積教案5
目標(biāo):
1、 理解圓柱體積公式的推導(dǎo)過程,掌握計算公式。
2、 會運用公式計算圓柱的體積,提高學(xué)生知識遷移的能力。
3、 在公式推導(dǎo)中滲透轉(zhuǎn)化的思想。
重點:
理解圓柱的體積公式的推導(dǎo)過程。
難點:
圓柱體積的計算。
用具:
課件、圓柱模型。
過程:
1、 教師提問。
。1)什么叫物體的體積?怎樣求長方體的體積?
(2)圓的面積公式是什么?
(3)圓的面積公式是怎樣推導(dǎo)的?
2、 教師:同學(xué)們,我們在研究圓的面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形來解決的,那么,圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課,我們就來研究這個問題。(板書:圓柱的體積)
1、 教學(xué)例5。
講授圓柱體積公式的推導(dǎo)。(演示動畫“圓柱的體積”)
(1)教師演示。
把圓柱的底面分成16個相等的扇形,再按照這些扇形的形狀,沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。
。2)學(xué)生利用學(xué)具操作。
。3)啟發(fā)學(xué)生思考、討論:
、賵A柱切開后可以拼成一個什么立體圖形?(近似的長方體)
、谕ㄟ^剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
A、拼成的這個近似長方體的立體圖形和圓柱相比,體積大小沒變,但形狀變了。
B、拼成的這個近似長方體的立體圖形和圓柱相比,底面的形狀變了,由圓變成了近似長方形的立體圖形,而底面的面積大小沒有發(fā)生變化。
C、這個近似長方體的立體圖形的高就是圓柱的高,高的長度沒有變化。
(4)學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,進行猜想。
、偃绻褕A柱的底面平均分成32份,拼成的形狀是怎樣的?
②如果把圓柱的底面平均分成64份,拼成的形狀是怎樣的?
、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?
(5)通過以上的觀察,啟發(fā)學(xué)生說出發(fā)現(xiàn)了什么。
、倨骄值姆輸(shù)越多,拼起來的形狀越接近長方體。
②平均分的份數(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體圖形的形狀就越接近長方體。
(6)推導(dǎo)圓柱的體積公式。
①學(xué)生分組討論:圓柱的體積怎樣計算?
②學(xué)生匯報討論結(jié)果,并說明理由。
教師:因為長方體的體積等于底面積乘高,(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積)近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
③用字母表示圓柱的體積公式。(板書:V=Sh)
2、 教學(xué)例6。
出示教材第26頁例6。
。1)學(xué)生讀題,理解題意。
(2)教師:要知道能否裝下這袋奶,首先要計算出什么?
學(xué)生:杯子的容積。
(3)指明要計算杯子的容積,學(xué)生在練習(xí)本上完成。
杯子的底面積:3.14×(8÷2)2=50、24(cm2)
杯子的容積:50、24×10=502、4(mL)
答:因為502、4大于498,所以杯子能裝下這袋牛奶。
3、 教學(xué)例7。
師:看下面的問題你能解答嗎?遇到了什么問題?有什么辦法嗎?(課件出示:教材第27頁例7)
生1:這個瓶子不是一個完整的圓柱,無法直接計算容積。
生2:我們可以先轉(zhuǎn)化成圓柱,再計算瓶子的容積。
師:怎樣轉(zhuǎn)化呢?說說你的想法。
學(xué)生可能會說:
瓶子里的水的體積始終是不變的,即使瓶子倒置后,水的體積與原來還是一樣的,這樣就說明瓶子的.容積其實就是水的體積加上18cm高的圓柱的體積。
也就是把瓶子的容積轉(zhuǎn)化成了兩個圓柱的體積。
……
師:嘗試自己解答一下。
學(xué)生嘗試解答;教師巡視了解情況。
組織學(xué)生交流匯報:
瓶子的容積=3.14×(8÷2)2×7+3.14×(8÷2)2×18
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25
=1256(cm3)
=1256(mL)
答:這個瓶子的容積是1256mL。
只要學(xué)生解答正確就要給予肯定,不強求算法一致。
【設(shè)計意圖:讓學(xué)生聯(lián)系實際,靈活地運用圓柱體積的計算方法解決實際問題,使學(xué)生體會到在生活中,數(shù)學(xué)知識應(yīng)用的廣泛性】
師:在本節(jié)課的學(xué)習(xí)中,你有哪些收獲?
學(xué)生可能會說:
利用“轉(zhuǎn)化”可以幫助我們解決問題。
我們利用了體積不變的特性,把不規(guī)則圖形轉(zhuǎn)化成規(guī)則圖形來進行體積的計算。
在五年級時,計算梨的體積也是用了轉(zhuǎn)化的方法。
……
【設(shè)計意圖:既幫助學(xué)生梳理了所學(xué)知識,又及時總結(jié)了學(xué)習(xí)方法,滲透了數(shù)學(xué)思想】
圓柱的體積
長方體的體積=底面積×高
↓ ↓ ↓
圓柱的體積=底面積×高
V=
A類
1、填表。
底面積S(平方米) 高h(yuǎn)(米) 圓柱的體積V(立方米)
15 3
6.4 4
2、一個圓柱形水池,底面半徑是10米,深1.5米。這個水池的占地面積是多少平方米?水池的容積是多少立方米?
(考查知識點:圓柱的體積;能力要求:掌握圓柱體積的計算方法)
B類
兩個底面積相等的圓柱,一個圓柱的高為9分米,體積為162立方分米。另一個圓柱的高為3分米,體積是多少立方分米?
(考查知識點:圓柱的體積;能力要求:能運用圓柱體積計算的方法解決簡單的問題)
課堂作業(yè)新設(shè)計
A類:
1、 45 25.6
2、 314平方米 471立方米
B類:
54立方分米
教材習(xí)題
第25頁“做一做”
1、 75×90=6750(cm3)
2、 3.14×(1÷2)2×10=7.85(m3)
第26頁“做一做”
1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.75361 不夠。
2、 3.14×(0.4÷2)2×5÷0.02≈31(張)
第27頁“做一做”
3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL
第28頁“練習(xí)五”
1、 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL
3、 3.14×(3÷2)2×0.5×2=7.065(m3)
4、 80÷16=5(cm)
5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975噸
6、 表面積:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)
體積:3.14×(6÷2)2×12=339.12(cm3)
表面積20×10+20×15+15×10)×2=1300(cm2) 體積:20×10×15=3000(cm3)
表面積:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)
體積:3.14×(14÷2)2×5=769.3(cm3)
7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)
8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL
932、58800 不夠
9、 81÷4.5×3=54(dm3)
10、 3.14×(10÷2)2×2=157(cm3)
11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.13041 能裝滿。
12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)
13、 30×10×4÷6=200(cm3)=200(mL)
14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)
15、 第四個圓柱的體積最。坏谝粋圓柱的體積最大。
發(fā)現(xiàn):同樣一張長方形紙可以圍成兩個不同的圓柱,且以長邊為圓柱的底面周長時圍成圓柱的體積最大。
數(shù)學(xué)六年級下冊圓柱的體積教案6
教學(xué)目標(biāo):
1、使學(xué)生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點:
圓柱體積計算公式的推導(dǎo)過程并能正確應(yīng)用。
教學(xué)難點:
借助教具演示,弄清圓柱與長方體的關(guān)系。
教具準(zhǔn)備:
多媒體課件、長方體、圓柱形容器若干個;學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計算公式用學(xué)具。
教學(xué)設(shè)想:
《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進行教學(xué)的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
(2)討論后匯報
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學(xué)過了長方體的體積計算,只要量出長、寬、高就行
[設(shè)計意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?
[設(shè)計意圖:進一步從實際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗,探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個底面是圓形
生2:側(cè)面展開是長方形
生3:說明圓柱和我們學(xué)過的圓和長方形有聯(lián)系
師:請同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計意圖:溫故而知新,既復(fù)習(xí)了舊知識又引出了新知識,學(xué)生在不知不覺中就學(xué)到了新知。]
(2)請大家回憶一下:在學(xué)習(xí)圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計意圖:通過想象,進一步發(fā)展學(xué)生的空間觀念,由形到體;同時使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)
。2)學(xué)生以小組為單位操作體驗。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學(xué)生進一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計意圖:教師提出問題,學(xué)生帶著問題大膽猜測、動手體驗。這樣學(xué)生在自主探索、體驗、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
(3)學(xué)生小組匯報交流
近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報,用教具進行演示。
。4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
[設(shè)計意圖:首先通過學(xué)生的'聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實踐操作,動畫演示,驗證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認(rèn)識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認(rèn)識得以升華(較抽象的認(rèn)識 公式)]
三、實踐應(yīng)用,鞏固新知。
1、火眼金睛判對錯。
(1)長方體、正方體、圓柱的體積都等于底面積乘高。( )
。2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個圓柱的體積相等,則它們一定等底等高。( )
[設(shè)計意圖:加深對剛學(xué)知識的分析和理解。]
2、計算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
(2)底面周長是12。56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設(shè)計意圖:讓學(xué)生靈活運用公式進行計算。]
3、實踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設(shè)計意圖:使學(xué)生進一步感受到生活中處處有數(shù)學(xué),同時培養(yǎng)學(xué)生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個學(xué)生都體驗到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識,還包括能力、方法、情感等,學(xué)生體驗到學(xué)習(xí)的樂趣,增強了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計:
圓柱的體積
根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運用數(shù)學(xué)知識解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識的特點。運用已有的知識(長方體體積的計算)經(jīng)驗(圓面積公式的推導(dǎo))解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯(lián)系,并創(chuàng)造性的補充了一些與學(xué)生身邊實際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。
數(shù)學(xué)六年級下冊圓柱的體積教案7
教學(xué)目標(biāo):
1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
教學(xué)重點:
掌握圓柱體積的計算公式。
教學(xué)難點:
圓柱體積的計算公式的推導(dǎo)。
教學(xué)準(zhǔn)備:主題圖、圓柱形物體
教學(xué)過程:
一、復(fù)習(xí):
1、長方體的體積公式是什么?
。ㄩL方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
二、新課:
1、圓柱體積計算公式的推導(dǎo):
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。
(課件演示將圓柱細(xì)分,拼成一個長方體)
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補充例題:
(1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的`體積是多少?
(2)指名學(xué)生分別回答下面的問題:
、 這道題已知什么?求什么?
② 能不能根據(jù)公式直接計算?
③ 計算之前要注意什么?
(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
(3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的.
①V=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.
(4)做第20頁的“做一做”。
學(xué)生獨立做在練習(xí)本上,做完后集體訂正。
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計算公式是怎樣的?(V=πr2h)
4、教學(xué)例6:
(1)出示例6,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
(2)學(xué)生嘗試完成例6。
① 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補充例題、例6有哪些相同的地方和不同的地方?
。ㄏ嗤氖嵌家脠A柱的體積計算公式進行計算;不同的是補充例題已給出底面積,可直接應(yīng)用公式計算;例6只知道底面直徑,要先求底面積,再求體積。)
三、鞏固練習(xí):
1、做第26頁的第1題:
2、練習(xí)五的第2題:
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。
四、全課總結(jié):
數(shù)學(xué)六年級下冊圓柱的體積教案8
教學(xué)內(nèi)容:
本內(nèi)容是六年級下冊第8頁至第9頁。
教材分析:
本節(jié)內(nèi)容是在學(xué)生了解了圓柱體的特征,掌握了圓柱表面積的計算方法基礎(chǔ)上進行教學(xué)的,是幾何知識的綜合運用,為后面學(xué)習(xí)圓錐的體積打下基礎(chǔ),教材重視類比,轉(zhuǎn)化思想的滲透,引導(dǎo)學(xué)生經(jīng)歷“類比猜想——驗證說明”的探索過程,掌握圓柱體積的計算方法。
學(xué)生分析:
學(xué)生已掌握了長方體和正方體體積的計算方法以及圓的面積計算公式的推導(dǎo)過程,在圓柱的體積這節(jié)課化的體現(xiàn)動手實踐,自主探索,合作交流,為突破重、難點。本節(jié)課在教法和學(xué)法上從以下幾方面著手:先利用教具通過直觀教學(xué)讓學(xué)生觀察,比較,動手操作,經(jīng)歷知識產(chǎn)生的過程,發(fā)展學(xué)生思維能力;讓學(xué)生通過“類比猜想——驗證說明”的探索過程,主動學(xué)習(xí),掌握知識形成技能,合作探究學(xué)習(xí)成為課堂的主要學(xué)習(xí)方式。
學(xué)習(xí)目標(biāo):
1、使學(xué)生理解和掌握圓柱體積的計算方法,在推導(dǎo)圓柱體積計算公式的過程中培養(yǎng)學(xué)生初步的.空間觀念和動手操作的技能。
2、使學(xué)生能夠通過觀察,大膽猜想和驗證獲得新知識在教學(xué)活動過程中發(fā)展學(xué)生的推理能力,滲透轉(zhuǎn)化思想。
3、引導(dǎo)學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)學(xué)生的數(shù)學(xué)意識和合作意識。
教學(xué)過程:
出示教學(xué)情境:一個杯子能裝多少水呢?
想一想:杯子里的水是什么形狀?準(zhǔn)備用什么方法來計算水的體積?
讓學(xué)生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出相關(guān)數(shù)據(jù),就能求出水的體積;倒入量筒里直接得到水的體積。
(設(shè)計意圖:讓學(xué)生根據(jù)自己已有的知識經(jīng)驗,把圓柱形杯子里的水倒入長方體或正方體容器,使形狀轉(zhuǎn)化成自己熟悉的長方體或正方體,只要求出長方體或正方體的體積就知道水的體積。)
出示第二情境:圓柱形的木柱子的體積是多少?用這種方法還行嗎?怎么辦?
(設(shè)計意圖:創(chuàng)設(shè)問題情境,引起學(xué)生認(rèn)知沖突,激起學(xué)生求知欲望,使學(xué)生帶著積極的思維參與到學(xué)習(xí)中去,從而產(chǎn)生認(rèn)知的飛躍。)
探究新知:怎樣計算圓柱的體積?(板書課題:計算圓柱的體積)
大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
。ㄔO(shè)計意圖:在新知識的探索中,合理的猜測能為探索問題,解決問題的思維方向起到導(dǎo)航和推進作用。)
驗證:能否將圓柱轉(zhuǎn)化為學(xué)過的立體圖形?
讓學(xué)生利用學(xué)具動手操作來推導(dǎo)圓柱體積公式(小組合作探究:給學(xué)生提供充分的時間和空間),引導(dǎo)學(xué)生把圓柱體底面平均分成多個小扇形,沿著高切開,拼成一個近似的長方體。
思考:圓柱體轉(zhuǎn)化成長方體為什么是近似的長方體?怎樣才能使轉(zhuǎn)化的立體圖形更接近長方體?
(設(shè)計意圖:讓學(xué)生明確圓柱體的底面平均分成的扇形越多拼成的立體圖形就越接近于長方體,滲透“極限”的思想。)
用課件展示切拼過程,讓學(xué)生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。
學(xué)生討論交流:
1、把圓柱拼成長方體后,什么變了,什么沒變?
2、拼成的長方體與圓柱之間有什么聯(lián)系?
3、通過觀察得到什么結(jié)論?
得到:圓柱的體積=底面積×高
V=Sh=πr2h
(設(shè)計意圖:在數(shù)學(xué)活動中通過觀察比較培養(yǎng)學(xué)生抽象概括能力,及邏輯思維能力。)
練習(xí)設(shè)計:
1、計算下面各圓柱的體積。
。1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm
2、算一算:已知一根柱子的底面半徑為0。4米,高為5米,你能算出它的體積嗎?
。ㄔO(shè)計意圖:使學(xué)生達到舉一反三的效果,從而訓(xùn)練學(xué)生的技能,靈活掌握本課重點。)
3、試一試:
(1)一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個桶的容積是多少升?
。2)一根圓柱形鐵棒,底面周長是12。56厘米,長是100厘米,它的體積是多少?
。ㄔO(shè)計意圖:運用圓柱的體積計算公式解決生活實際問題,切實體驗到數(shù)學(xué)源于生活,身邊處處是數(shù)學(xué)。)
4、拓展練習(xí):
(1)填表:
填表后觀察:你發(fā)現(xiàn)了什么?先獨立思考,再小組交流,最后匯報。
。ㄔO(shè)計意圖:在教學(xué)時應(yīng)找出知識間存在著的密切聯(lián)系,幫助學(xué)生建立一個較為完整的知識系統(tǒng),為以后“比例”的教學(xué)作了孕伏)
。2)一個柱形容器的底面直徑是10厘米,把一塊鐵塊放入這個容器后,水面上升2厘米,這塊鐵塊的體積是多少?
。ㄔO(shè)計意圖:體會測量不規(guī)則物體體積的方法,認(rèn)識到數(shù)學(xué)的價值體驗,使學(xué)生的思維處于積極的狀態(tài),培養(yǎng)學(xué)生思維靈活性,提高學(xué)生創(chuàng)造性解決問題的能力。)
課堂小結(jié):談?wù)勥@節(jié)課你有哪些收獲?
(設(shè)計意圖:采用提問式小結(jié),讓學(xué)生暢談本節(jié)課的收獲,包括知識,能力,方法,情感等,通過對本節(jié)課所學(xué)知識的總結(jié)與回顧,培養(yǎng)學(xué)生的歸納概括能力,使學(xué)生學(xué)到的知識系統(tǒng)化,完整化。)
教學(xué)反思:
本節(jié)課采用新的教學(xué)理念,創(chuàng)設(shè)情境導(dǎo)入滲透轉(zhuǎn)化思想,讓學(xué)生在興趣盎然中徑歷自主探究,獨立思考、合作交流從而獲得新知。
情境導(dǎo)入滲透轉(zhuǎn)化思想激發(fā)學(xué)生的學(xué)習(xí)欲望,課的開始讓學(xué)生想方法測量出圓柱形水杯中水的體積,學(xué)生想出把水倒入長方體容器中轉(zhuǎn)化成長方體的體積來計算出水的體積,初步引導(dǎo)學(xué)生把圓柱體的體積轉(zhuǎn)化為長方體的體積。教會學(xué)生數(shù)學(xué)方法,注重讓學(xué)生在操作中探究,動手操作能展示學(xué)生個體的實踐活動,在動手過程中易于激發(fā)興趣,積累知識,發(fā)展思維,利于每一位學(xué)生自主,獨立,創(chuàng)造性的學(xué)習(xí)知識,發(fā)展他們的能力,課中讓學(xué)生經(jīng)歷知識產(chǎn)生的過程,理解和掌握數(shù)學(xué)基礎(chǔ)知識,讓學(xué)生在體驗和探索過程中不斷積累知識,逐步發(fā)展其空間觀念,促進學(xué)生的思維發(fā)展。
數(shù)學(xué)六年級下冊圓柱的體積教案9
第二課時
教學(xué)目標(biāo)
1.經(jīng)歷同桌合作,測量、計算圓柱形物體體積的過程。
2.會測量圓柱形物體的有關(guān)數(shù)據(jù),能根據(jù)圓柱的高及底面直徑或周長計算圓柱的體積。
3.能與同伴合作尋找解決問題的有效方法,能表達解決問題的大致過程和結(jié)果。
教學(xué)重點
能根據(jù)學(xué)生自己測量的數(shù)據(jù)進行圓柱體積的計算。
教學(xué)難點
給出圓柱底面周長如何計算圓柱的體積。
教具準(zhǔn)備
學(xué)生自備的茶葉筒或露露瓶。
教學(xué)過程
一、測量茶葉筒的體積
1.師:同學(xué)們,我們要想計算這個茶葉筒的體積,應(yīng)該首先知道哪些數(shù)據(jù)?
生:茶葉筒的高,底面直徑或半徑。
師:很好,那么我們就來親手量一量你們手里的圓柱體的各個數(shù)據(jù),并計算出它們的體積。
學(xué)生同桌合作測量并計算。
2.交流測量數(shù)據(jù)的方法和計算的結(jié)果。
3.剛才同學(xué)大部分都測量的是茶葉筒的高和直徑或半徑,有沒有測量茶葉筒的底面周長的?如果有,就說說是怎么測量和計算的。如果沒有,就提示大家,如果給出了圓柱底面周長,怎樣計算圓柱的體積呢?
生:利用周長先求出半徑,再進行計算。
師:你們會不會測量茶葉筒的底面周長呢?如果已經(jīng)忘記,就進行一下提示:在圓柱的底面上做一標(biāo)記,然后把圓柱體在直尺上進行滾動。或用皮尺測量。請大家實際測量一下底面周長,并進行計算,看看和剛才計算的結(jié)果是否一致。
二、鞏固練習(xí)
1.一根圓柱形水泥柱子,它的底面周長是6.28分米,高200分米,求它的體積?
2.獨立完成練一練的1-3題。
三、家庭作業(yè)
1.練一練的第4小題。
2.①一個圓柱的的體積是141.3立方厘米,底面半徑3厘米,它的高是多少厘米?
②一根圓柱形鋼材,截下2米,量得它的'橫截面的直徑是4厘米,如果每立方厘米鋼重7.8克,截下的這段鋼材重多少克?
圓柱的體積
第三課時 容積
教學(xué)目標(biāo)
1.結(jié)合具體事例,經(jīng)歷探索容積計算問題的過程。
2.掌握計算容積的方法,能解決有關(guān)容積的簡單實際問題。
3.在解決容積問題的過程中,體驗數(shù)學(xué)與日常生活的密切聯(lián)系。
教學(xué)重點
利用體積公式計算保溫杯的容積。
教學(xué)難點
計算容積所需要的數(shù)據(jù)是容器內(nèi)壁的高、底面直徑或半徑,如何獲得這些數(shù)據(jù)。
教學(xué)過程
一、復(fù)習(xí)舊知
1.求下列圓柱的體積(口答列式)。
(1)底面積3平方分米,高4分米;
(2)底面半徑2厘米,高2厘米;
。3)底面直徑2分米,高3分米。
追問:圓柱的體積是怎樣計算的?(板書:V=Sh)
2.復(fù)習(xí)容積。
提問:什么是容積?它與物體的體積有什么區(qū)別?我們是按什么方法計算容積的?
3.引入新課。
我們已經(jīng)學(xué)習(xí)過圓柱的體積計算,知道了容積和容積的計算方法。這節(jié)課,就在計算圓柱體積的基礎(chǔ)上,學(xué)習(xí)圓柱的容積計算。(板書課題)
二、教學(xué)新課
1.教學(xué)例題。
出示例題,讀題。提問:這道題求什么?你能計算它的容積嗎?請大家仔細(xì)看一下題目,解答這道題還要注意些什么?(統(tǒng)一單位或改寫體積單位,取近似數(shù))指名學(xué)生板演,其余學(xué)生做在練習(xí)本上。集體訂正,說明每一步求的什么,怎樣求的。同時注意是怎樣統(tǒng)一單位和取近似值的。
2.注意體積單位和容積單位的區(qū)別,以及它們之間的換算:
1立方分米=1升 1立方厘米=1毫升
3.注意保溫杯內(nèi)壁的厚度應(yīng)該減去幾個才是內(nèi)壁的直徑,高應(yīng)該減去幾個厚度才是內(nèi)壁的高?
4.學(xué)生獨立完成。然后進行全班交流。
三、新課小結(jié)
1.提問:求圓柱形容器的容積要怎樣計算?如果知道圓柱底面的半徑或直徑,怎樣求圓柱的體積?
2.計算容積與計算體積有什么相同點和不同點?
四、提高練習(xí)
把6個這樣的保溫杯倒?jié)M水,大約需要多少千克水?
注意大頭蛙的話:1毫升水重1克。
五、鞏固練習(xí)
1.拿一個水杯,量出它的內(nèi)直徑和高,算一算這個水杯大約可以裝多少水?
注意:如果給出水杯的外壁直徑、杯壁厚度和高,怎么計算?(內(nèi)壁就減兩個厚度,高減一個厚度,因為水杯沒有蓋。)
2.練一練1:求水杯的水有多少是求水杯的容積嗎?水杯的高度與計算容積有關(guān)嗎?需要用哪個數(shù)據(jù)來計算?(杯中水的高度)
3.練一練第4小題。怎么鋼管的體積?
1)鋼管體積=大圓柱體積-小圓柱體積
2)鋼管體積=鋼管環(huán)形底面積高
數(shù)學(xué)六年級下冊圓柱的體積教案10
教學(xué)內(nèi)容:教材第12頁例3、練一練,練習(xí)二第6~11題。
教學(xué)要求:使學(xué)生進一步認(rèn)識體積的計算方法,能根據(jù)不同的條件求圓柱的體積,學(xué)會計算套管體積的計算方法,井能應(yīng)用于實際求出物體的重量。
教學(xué)重點:計算套管體積的計算方法。
教學(xué)難點:根據(jù)不同的條件求圓柱的體積。
教學(xué)過程:
一、鋪墊孕伏:
1.求下列圓柱的體積(口答列式)。
(1)底面積3平方分米,高4分米;
(2)底面半徑2厘米,高2厘米;
(3)底面直徑2分米,高3分米。
追問:圓柱的體積是怎樣計算的?(板書:V=Sh)
2.復(fù)習(xí)環(huán)形面積的計算公式。
提問:怎樣計算環(huán)形面積?你能舉例和同學(xué)們說一說嗎?小組交流。
3.引入新課。
我們已經(jīng)學(xué)習(xí)過圓柱的體積計算。這節(jié)課,就在計算圓柱體積的基礎(chǔ)上,學(xué)習(xí)套管體積的計算。(板書課題)
二、自主探究:
1.教學(xué)例3。
出示例3,讀題。提問:這道題求什么?要求鋼管的質(zhì)量先要求什么?怎樣求鋼管的體積?小組討論。解答這道題還要注意些什么?(單位,取近似數(shù))指名學(xué)生板演,其余學(xué)生做在練習(xí)本上。集體訂正,說明每一步求的'什么,怎樣求的。
2.新課小結(jié)。
提問:怎樣計算套管體積?如果知道套管的內(nèi)周長和外周長幾套管的長,怎樣求套管的體積?
三、鞏固練習(xí)
1.做練一練第1題。
指名兩人板演,其余學(xué)生分兩組,每組-題做在練習(xí)本上。集體訂正。
2.做練習(xí)二第6題。
讓學(xué)生在練習(xí)本上完成。指名學(xué)生口答算式,老師板書。結(jié)合讓學(xué)生說一說是怎樣想的。
四、布置作業(yè)
練習(xí)二第7、8題及數(shù)訓(xùn)。
數(shù)學(xué)六年級下冊圓柱的體積教案11
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。例4是圓柱的體計算公式的直接運用,是圓柱體積計算的基本,但這題又給學(xué)生設(shè)置了單位不統(tǒng)一的障礙,讓學(xué)生在直接應(yīng)用公式計算的同時注意計量單位的統(tǒng)一。例5是圓柱體積計算公式的擴展練習(xí),意在讓學(xué)生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴展外,公式的運用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的底面積,再求出水桶的體積。
教學(xué)目的:
1、運用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。
2.會用圓柱的體積計算圓柱形物體的體積和容積。
3.引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力
4.借助實物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教 具:圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。
學(xué) 具:小刀,用土豆做成的一個圓柱體。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1.說說長方體的體積計算公式,正方體的體積計算公式,把這兩個體積公式統(tǒng)一成一個又是怎樣的?這個公式計算體積的物體有什么特征?
2.指出圓柱各部分的名稱。說一說圓柱有多少條高?有幾個底面?每個1自由的面積如何計算?這個計算公式是怎樣推導(dǎo)出來的?
二、設(shè)疑揭題
我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
[評析:復(fù)習(xí)抓住教學(xué)重點,瞄準(zhǔn)學(xué)習(xí)新知識所必須的舊知識,、舊方法進行鋪墊,溝通了知識之間的內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學(xué)習(xí)新知識的思路,導(dǎo)出了解決問題的方法,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,激發(fā)了學(xué)生探求新知識的欲望。
三、新課教學(xué)
1.探究推導(dǎo)圓柱的體積計算公式。
(l)自學(xué)第43頁第二自然段,然后按照書中要求,兩人一組將于中的圓柱切開拼一拼,再說一說你拼成三個近似什么形狀的.立方體?
(2)請學(xué)生演示教具,學(xué)生邊演示邊講解切割拼合過程。
(3)根據(jù)學(xué)生講解,出示圓柱和長方體的彩圖。
(4)學(xué)生觀察兩個立體圖,找出兩圖之間有哪些部分是相等的?
(5)依據(jù)長方體的體積計算公式推導(dǎo)出圓柱的體積計算公式。板書:V=sh
(6)要用這個公式計算圓柱的體積必須知道什么條件?
[評析:在教學(xué)中充分讓學(xué)生動手、動腦、動口,讓學(xué)生在操作中感知,在觀察中理解,在比較中歸納。教師的導(dǎo)、放、扶層次分明,充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力]
2.教學(xué)例4
(1)出示例4。
(2)默讀題目,看題目告訴了什么條件?要求什么?想一想你將如何計算?誰愿意試一試?
(3)請一名同學(xué)板演,其余同學(xué)在作業(yè)本上做。
(4)板演的同學(xué)講解自己的解題方法,說一說在做這道題的過程中遇到了什么問題,是怎樣解決的?
(5)教師歸納學(xué)生所用的解題方法。強調(diào)在解題的過程中要注意單位統(tǒng)一。
3.教學(xué)例5
(1)請同學(xué)們想一想,如果已知圓柱底面的半徑r t和高h(yuǎn),怎樣求圓柱的體積?請學(xué)生自學(xué)并填寫第44頁第一自然段的空白部分。
(2)出示例5,指名讀題。請同學(xué)們思考解題方法。
(3)請學(xué)生講解題思路討論、歸納統(tǒng)一的解題方法。
(4)讓學(xué)生按討論的方法做例5。
(5)教師評講、總結(jié)方法。
(6)學(xué)生討論。比較例4、例5有哪些相同和不同點。
[評析:引導(dǎo)學(xué)生通過實際操作,由觀察、分析、比較,再進行計算,達到運用新知、鞏固新知的目的。]
四、新知應(yīng)用
1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時反饋練習(xí)中出現(xiàn)的錯誤,并加以評講。
2.剛才同學(xué)們在做例4時,還有下面幾種解法,請大家仔細(xì)思考,這些解法是對還是錯?試說明理由。
(1)V=sh=5O2.1=105
答:它的體積是105立方厘米
(2)2.l米=210厘米
V=sh=50210=10500
答:它的體積是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的體積是l.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的體積是0.01051(立方米)。
五、全課總結(jié)
問:這節(jié)課里我們學(xué)到了哪些知識?根據(jù)學(xué)生回答教師總結(jié)。
六、學(xué)生作業(yè)
練習(xí)十一的第l 、2題。
[總結(jié)實:本節(jié)課的教學(xué)體現(xiàn)了三個主要特點:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生操作、觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);三、正確處理兩主關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好?傊,本節(jié)課教師引導(dǎo)得法,學(xué)生學(xué)得靈活,體現(xiàn)了重在思,貴在導(dǎo),導(dǎo)思結(jié)合的原則,體現(xiàn)了教是為了不教,學(xué)會是為了會學(xué)的素質(zhì)教育思想]
數(shù)學(xué)六年級下冊圓柱的體積教案12
教學(xué)目標(biāo)
1.理解圓柱體積公式的推導(dǎo)過程。
2.能夠初步地學(xué)會運用體積公式解決簡單的實際問題。
3.進一步提高同學(xué)們解決問題的能力。
教學(xué)過程
教師活動學(xué)生活動
活動一:復(fù)習(xí)舊知。
1.什么是體積?
2.長方體的體積該怎樣計算?歸納到底面積乘高上來)
3.圓的面積怎樣計算?
4.圓的面積是怎樣推倒得來的?
活動二:經(jīng)歷圓柱體積的推導(dǎo)過程,得出公式。
(一)
1.計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進行計算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計算它的體積?
2.把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示。
3.思考:
。1)圓柱切開后可以拼成一個什么形體?
。2)通過實驗?zāi)惆l(fā)現(xiàn)了什么?
*拼成的近似長方體體積大小沒變,形狀變了。
*拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。
*近似長方形的高就是圓柱的高,沒有變化。
4.根據(jù)圓面積的推導(dǎo)公式進行猜想:
如果把圓柱體32等份,64等份,128等份拼成的長方體的形狀怎么樣?
。ǘ┩ㄟ^以上的觀察你發(fā)現(xiàn)了什么?
師:平均分的分?jǐn)?shù)越多,每分扇形的底面就越小,弧就越短,拼成的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
(三)推導(dǎo)圓柱體積公式。
長方體的體積可以用底面積乘高來計算,而在推導(dǎo)過程中,長方體的'底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
板書:V=Sh
。ㄋ模┧阋凰悖阂阎桓拥牡酌姘霃綖0.4米,高為5米。你能算出它的體積嗎?
要求這根柱子的體積,要先求什么?
活動三:試一試。
1.一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2.一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
已知底面周長對解決問題有什么幫助嗎?必須先求出什么?
物體所占空間的大小叫做物體的體積。
指名說。
是把圓面積轉(zhuǎn)化成(補充:面積相等的)近似的長方形面積進行計算的。
啟發(fā)學(xué)生思考。
引導(dǎo)學(xué)生進行觀察。
小組討論:實驗前后,什么變了?什么沒變?
討論后,整理出來,再進行匯報。
說說你猜想的結(jié)果。
生:平均分的分?jǐn)?shù)越多,拼起來的形體越近似于長方體。
小組討論:怎樣計算圓柱的體積?
學(xué)生匯報討論結(jié)果。
請你先求底面積,再求體積,自己試計算。請生板演。
正確理解題意,自己完成。
先求底面半徑再求底面積,最后求體積。
數(shù)學(xué)六年級下冊圓柱的體積教案13
教學(xué)內(nèi)容:
北師大版教學(xué)六年級《圓柱的體積》
教學(xué)目標(biāo):
1、結(jié)合具體的情境和實踐活動,理解圓柱體體積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;
教學(xué)重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積。
教學(xué)難點:
理解圓柱體積計算公式的推導(dǎo)過程。
教具準(zhǔn)備:
圓柱體積演示教具。
教學(xué)過程:
一、舊知鋪墊
1、談話引入
最近我們認(rèn)識了圓柱和圓錐,還學(xué)會了計算圓柱的表面積,F(xiàn)在請看老師的`這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實際是指它們的什么?(生答)
2、提出問題:什么叫體積?我們學(xué)過那些圖形的體積?怎么算的?(生答師隨之板書)
這節(jié)課我們就來學(xué)習(xí)圓柱的體積。
二、自主探究,解決問題
。ㄒ唬┱J(rèn)識圓柱體積的意義。
圓柱的體積到底是指什么?誰能舉例說呢?
(二)圓柱體積的計算公式的推導(dǎo)。
1、我們學(xué)過長方體和正方體體積的計算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)
2、回憶圓面積的推導(dǎo)過程。
3、教具演示。
。1)取圓柱體模型。
。2)將圓柱體切成兩半。
。3)分別將兩半均分成若干小塊。
。4)動手拼成一個近似的長方體。
。ㄈw納公式。
。ò鍟簣A柱的體積=底面積高)
用字母表示:(板書:V=Sh)
三、鞏固新知
1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?
審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。
現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?
2、完成試一試
3、跳一跳:統(tǒng)一直柱體的體積的計算方法。
四、課堂總結(jié)、拓展延伸
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點?
五、布置作業(yè)
練一練1-5題。
數(shù)學(xué)六年級下冊圓柱的體積教案14
目標(biāo):通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式;使學(xué)生理解圓柱的體積公式的推導(dǎo)過程,能夠運用公式正確地計算圓柱的體積。
重點:能夠正確計算圓柱體體積
教學(xué)難點:圓柱體體積公式的推導(dǎo)過程。
教具準(zhǔn)備:圓柱的體積公式演示教具(把圓柱底面平均分成16個扇形,然后把它分成兩部分,兩部分分別用不同顏色區(qū)別開)。
教學(xué)過程:
一、復(fù)習(xí)
1.圓柱的側(cè)面積怎么求?
(圓柱的側(cè)面積=底面周長×高。)
2.長方體的體積怎樣計算?
學(xué)生可能會答出“長方體的`體積=長×寬×高”,教師繼續(xù)引導(dǎo)學(xué)生想到長方體和正方體體積的統(tǒng)一公式“底面積×高”。
板書:長方體的體積=底面積×高
3.拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么圓柱有幾個底面?有多少條高?
二、導(dǎo)入新課
教師:請大家想一想,在學(xué)習(xí)圓的面積時,我們是怎樣把圓變成已學(xué)過的圖形再計算面積的?
先讓學(xué)生回憶,同桌的相互說說。
然后指名學(xué)生說一說圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓的面積和所拼成的長方形面積之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
教師:怎樣計算圓柱的體積呢?大家仔細(xì)想想看,能不能把圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積?
讓學(xué)生相互討論,思考應(yīng)怎樣進行轉(zhuǎn)化。
指名學(xué)生說說自己想到的方法,有的學(xué)生可能會說出將圓柱的底面分成扇形切開教師應(yīng)該給予表揚。
教師:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積。
板書課題:圓柱的體積
三、新課
1.圓柱體積計算公式的推導(dǎo)。
圓的面積是怎樣推導(dǎo)出來的?
圓柱體積計算公式的推導(dǎo)又會怎樣呢?(看模型,聯(lián)想長方體)
推導(dǎo)其體積計算公式
板書:圓柱的體積=底面積×高
教師:如果用V表示圓柱的體積,S表示圓柱的底面積,h表示圓柱的高,可以得到圓柱的體積計算公式: V=Sh
2.教學(xué)例1
出示例1
(1)教師指名學(xué)生分別回答下面的問題:
這道題已知什么?求什么?
能不能根據(jù)公式直接計算?
計算之前要注意什么?
通過提問,使學(xué)生明確計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位。
(2)用投影出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的?
V=Sh=50×2.l=105
答:它的體積是105立方厘米。
2.1米=110厘米。
V=Sh=50×210=10500
答:它的體積是1050O立方厘米。
50平方厘米=0.5立方米
V=Sh=0.5×2.1=1.05答:它的體積是1.05立方米。
50平方厘米=0.005平方米
V=Sh=0.005×2.1=0.0105立方米
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單i對不正確的第、種解答要說說錯在什么地方。
五、作業(yè):
數(shù)學(xué)書: 9頁 第2、3、4、
數(shù)學(xué)六年級下冊圓柱的體積教案15
教學(xué)目標(biāo):
1、知識技能
運用遷移規(guī)律,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、過程方法
讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3、情感態(tài)度價值觀
通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點:
圓柱體體積的計算公式的推導(dǎo)過程及其應(yīng)用。
教學(xué)難點:
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:圓柱體積公式推導(dǎo)演示學(xué)具、多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
同學(xué)們,我們的圖形世界十分豐富,回憶一下,什么叫做物體的體積?我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體
的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
二、圖柱轉(zhuǎn)化,自主探究,驗證猜想。
。ㄒ唬┎孪搿
1、大家看圓柱的底面是一個圓形,在學(xué)習(xí)圓面積計算時,我們是把圓轉(zhuǎn)化成哪種圖形來計算的?(演示課件:圓轉(zhuǎn)化成長方形,推導(dǎo)圓面積公式的過程。)
[數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師由復(fù)習(xí)圓面積公式的推導(dǎo)過程入手,實現(xiàn)知識的遷移。]
2、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?揭示課題:圓柱的體積。
。ǘ┎僮黩炞C。
1、請學(xué)生拿出圓柱體的演示學(xué)具,以小組為單位,聯(lián)想圓形面積的轉(zhuǎn)化方式,合作探究將圓柱轉(zhuǎn)化為長方體的方法。
在操作時,學(xué)生分組邊操作邊討論以下問題:
、倨闯傻慕崎L方體的.體積與原來的圓柱體積有什么關(guān)系?
、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有什么關(guān)系?
?.拼成的近似長方體的高與原來的圓柱的高有什么關(guān)系?
2、小組代表匯報
。▽W(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵)
3、電腦演示操作
。1)電腦演示圓柱體轉(zhuǎn)化成長方體的過程:
仔細(xì)觀察:圓柱體轉(zhuǎn)化成一個長方體后,長方體的長相當(dāng)于圓柱的什么?長方體的寬和高又相當(dāng)于圓柱的什么?
動畫演示:把圓柱的底面平均分成32份、64份,切開后拼成的物體會有什么變化?
(分的分?jǐn)?shù)越多,拼成的圖形就越接近長方體)
(2)根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
。3)你的猜想正確嗎?學(xué)生齊讀圓柱的體積計算公式。
三、練習(xí)鞏固,靈活應(yīng)用
闖關(guān)1.一根圓柱形鋼材,底面積是75平方厘米,長是90厘米。它的體積是多少?
讓學(xué)生試做,集體反饋。
闖關(guān)2.想一想:如果已知圓柱底面的半徑(r)和高(h),圓柱的體積的計算公式是什么?如果已知圓柱底面的直徑(d)和高(h)呢?如果已知圓柱的底面周長(C)和高(h)呢?
學(xué)生討論、交流、匯報。
小結(jié):解決以上問題的關(guān)鍵是先求出什么?(生:底面積)
闖關(guān)3.下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的。)學(xué)生在練習(xí)本上獨立完成,集體反饋。
四、課堂小結(jié)
學(xué)習(xí)本節(jié)課你有哪些收獲?還有哪些疑惑?(生匯報收獲)
五、布置作業(yè)
教科書第21頁練習(xí)三第1-4題。
板書設(shè)計:
圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
V= Sh
【數(shù)學(xué)六年級下冊圓柱的體積教案】相關(guān)文章:
數(shù)學(xué)六年級下冊教案:圓柱的體積02-10
小學(xué)數(shù)學(xué)《圓柱的體積》教案03-13
小學(xué)數(shù)學(xué)《圓柱的體積》教案02-04
六年級下冊數(shù)學(xué)圓柱與圓錐《圓柱的體積》的教案設(shè)計07-04
人教版六年級下冊數(shù)學(xué)《圓柱的體積》教案03-07