八年級(jí)數(shù)學(xué)下冊(cè)教案(集合)
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,就有可能用到教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編精心整理的八年級(jí)數(shù)學(xué)下冊(cè)教案,希望對(duì)大家有所幫助。
八年級(jí)數(shù)學(xué)下冊(cè)教案1
學(xué)習(xí)目標(biāo)
1、能說(shuō)出約分的意義和步驟。
2、能說(shuō)出最簡(jiǎn)分式的意義。
3、能說(shuō)出分式的乘、除和乘方法則,并能用式子表示。
4、能熟練地進(jìn)行分式的乘除和乘方運(yùn)算。
5、會(huì)歸納總結(jié)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。
6、能熟練地運(yùn)用冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算。
主體知識(shí)歸納
1、約分根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
2、約分的步驟把分式的分子與分母分解因式,然后約去分子與分母的公因式。
3、最簡(jiǎn)分式一個(gè)分式的分子與分母沒(méi)有公因式時(shí),叫做最簡(jiǎn)分式。
4、分式的乘法法則分式乘以分式,用分子的積做積的分子,分母的積做積的分母。
5、分式的除法法則分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
6、分式的乘方(n為正整數(shù))、就是說(shuō):分式的乘方是把分子、分母各自乘方。
7、整數(shù)指數(shù)冪的運(yùn)算性質(zhì)可歸納如下
(1)am·an=am+n(m、n都是整數(shù));
(2)(am)n=amn(m、n都是整數(shù));
。3)(ab)n=anbn(n是整數(shù))、
基礎(chǔ)知識(shí)精講
1、正確理解分式約分的意義
。1)約分的根據(jù)是分式的基本性質(zhì),約分的實(shí)質(zhì)是一個(gè)分式化成最簡(jiǎn)分式,約分的關(guān)鍵是將一個(gè)分式的分子與分母的公因式約去。
(2)進(jìn)行約分的前提條件:分子、分母必須都為積的'形式且有公因式。
2、分式約分的步驟是:把分式的分子與分母分解因式,然后約去分子、分母和公因式、約分時(shí)應(yīng)注意以下兩點(diǎn):
。1)若分子、分母都是幾個(gè)因式乘積的形式,應(yīng)約去分子、分母中相同因式的最低次冪、當(dāng)分子、分母的系數(shù)是整數(shù)時(shí),還應(yīng)約去它們的最大公約數(shù)。、
。2)若分式的分子、分母是多項(xiàng)時(shí),要先將分子、分母按同一字母降冪排列、首項(xiàng)為負(fù),提取負(fù)號(hào)放到整個(gè)分式的前面,將分子、分母分解因式,然后再約分。、
3、進(jìn)行分式的乘除運(yùn)算時(shí),應(yīng)注意以下幾點(diǎn):
。1)分式的乘除運(yùn)算,實(shí)際上是分式的乘法運(yùn)算,根據(jù)法則應(yīng)先把分子、分母相乘,化成一個(gè)分式后再進(jìn)行約分,化為最簡(jiǎn)分式、但實(shí)際運(yùn)算時(shí),常常先約分再相乘,這樣做既簡(jiǎn)單易行,又不易出錯(cuò)、
。2)如果分式的分子、分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解,再約分。
。3)分式運(yùn)算的結(jié)果必須化成最簡(jiǎn)分式,特別地,若分子(或分母)是公因式,約去公因式后,分子(或分母)是1而不是0。
。4)要注意運(yùn)算順序,對(duì)于分式乘除法來(lái)說(shuō),它只含有同級(jí)乘除運(yùn)算,所以只要沒(méi)有附加條件(如括號(hào)等),就必須按照從左至右的順序進(jìn)行計(jì)算。
八年級(jí)數(shù)學(xué)下冊(cè)教案2
教學(xué)目標(biāo)
1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;
2.培養(yǎng)學(xué)生觀(guān)察、分析、比較的能力,并初步掌握對(duì)比的思想方法;
3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀(guān)點(diǎn)去分析問(wèn)題、解決問(wèn)題.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.
難點(diǎn):不等式的解集的概念.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)
2.用不等式表示:
(1)x的3倍大于1; (2)y與5的差大于零;
(3)x與3的和小于6; (4)x的小于2.
(3)當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?
-4,3.5,-2.5,3,0,2.9.
((2)、(3)兩題用投影儀打在屏幕上)
二、講授新課
1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向?qū)W生提出如下問(wèn)題:
不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?
(啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀(guān)研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫(huà)出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫(huà)出,好像是“挖去了”一樣.如下圖所示)
然后,啟發(fā)學(xué)生,通過(guò)觀(guān)察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡(jiǎn)稱(chēng)不等式x+3<6的解集,記作x<3.
最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)
一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱(chēng)為這個(gè)不等式的解集.
不等式一般有無(wú)限多個(gè)解.
求不等式的解集的過(guò)程,叫做解不等式.
3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的'解集
我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀(guān)地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)
在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))
記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.
即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含x=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.
此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“!边是用實(shí)心圓點(diǎn)“.”,是左邊部分,還是右邊部分.
三、應(yīng)用舉例,變式練習(xí)
例1 在數(shù)軸上表示下列不等式的解集:
(1)x≤-5; (2)x≥0; (3)x>-1;
(4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.
解(1),(2),(3)略.
(4)在數(shù)軸上表示1≤x≤4,如下圖
(5)在數(shù)軸上表示-2<x≤3,如下圖
(此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視遇到問(wèn)題,及時(shí)糾正)
例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):
(1)x小于-1; (2)x不小于-1;
(3)a是正數(shù); (4)b是非負(fù)數(shù).
解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)
(2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)
(3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)
(4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)
(以上各小題分別請(qǐng)四名學(xué)生生回答,教師板書(shū),最后,請(qǐng)學(xué)生在筆記本上畫(huà)數(shù)軸表示)
例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)
解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.
(本題從另一例面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀(guān),易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))
練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.
(2)在數(shù)軸上表示下列不等式的解集:
、賦>3; ②x≥-1; ③x≤-1.5;
、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.
(3)用觀(guān)察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái).
。4)觀(guān)察不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái),它的正數(shù)解是什么?
自然數(shù)解是什么?(*表示選作題)
四、師生共同小結(jié)
針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:
1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?
2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).
3.記號(hào)“≥”、“≤”各表示什么含義?
4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?
結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“!焙蛯(shí)心圓點(diǎn)“·”.
五、作業(yè)
1.不等式x+3≤6的解集是什么?
2.在數(shù)軸上表示下列不等式的解集:
(1)x≤1; (2)x≤0; (3)-1<x≤5;
(4)-3≤x≤2; (5)-2<x<; (6)-≤x<.
3.求不等式x+2<5的正整數(shù)解.
課堂教學(xué)設(shè)計(jì)說(shuō)明由于本節(jié)課的知識(shí)點(diǎn)比較多,因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),緊緊抓住不等式的解集這一重點(diǎn)知識(shí).通過(guò)對(duì)方程的解的電義的回憶,對(duì)比學(xué)習(xí)不等式的解及解集.同時(shí),為了進(jìn)一步加深學(xué)生對(duì)不等式的解集的理解,教學(xué)中注意運(yùn)用以下幾種教學(xué)方法:(1)啟發(fā)學(xué)生用試驗(yàn)的方法,結(jié)合數(shù)軸直觀(guān)形象來(lái)研究不等式的解和解集;(2)比較方程與不等式的解的異同點(diǎn);(3)通過(guò)例題與練習(xí),加深理解.
在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進(jìn)了一步.因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),就充分考慮到應(yīng)使學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),進(jìn)一步領(lǐng)會(huì)數(shù)形結(jié)合的思想方法具有形象、直觀(guān)、易于說(shuō)明問(wèn)題的優(yōu)點(diǎn),并初步學(xué)會(huì)用數(shù)形結(jié)合的觀(guān)念去處理問(wèn)題、解決問(wèn)題.
八年級(jí)數(shù)學(xué)下冊(cè)教案3
第一步;理解體驗(yàn):
1、復(fù)習(xí)平均數(shù)、中位數(shù)和眾數(shù)定義
2、引入課本P146R的例子
思路點(diǎn)撥:商場(chǎng)統(tǒng)計(jì)每位營(yíng)業(yè)員在某月的銷(xiāo)售額組成一個(gè)樣本,從樣本數(shù)據(jù)中的平均數(shù)、中位數(shù)、眾數(shù)中得到信息估計(jì)總體的趨勢(shì),達(dá)到問(wèn)題的解決。
由例題中(2)問(wèn)和(3)問(wèn)的不同,導(dǎo)致結(jié)果的不同,其目的是告訴學(xué)生應(yīng)該根據(jù)題目具體要求來(lái)靈活運(yùn)用三個(gè)數(shù)據(jù)代表解決問(wèn)題。
本例題也客觀(guān)的反映了數(shù)學(xué)知識(shí)對(duì)生活實(shí)踐的指導(dǎo)有重要的意義,也體現(xiàn)了統(tǒng)計(jì)知識(shí)與生活實(shí)踐是緊密聯(lián)系的。
第二步:總結(jié)提升:
平均數(shù)、眾數(shù)和中位數(shù)這三個(gè)數(shù)據(jù)代表的異同:
平均數(shù)、中位數(shù)和眾數(shù)都可以作為一組數(shù)據(jù)的代表,主要描述一組數(shù)據(jù)集中趨勢(shì)的量。平均數(shù)是應(yīng)用較多的一種量
平均數(shù)計(jì)算要用到所有的數(shù)據(jù),它能夠充分利用所有的數(shù)據(jù)信息,但它受極端值的影響較大.
眾數(shù)是當(dāng)一組數(shù)據(jù)中某一數(shù)據(jù)重復(fù)出現(xiàn)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少也不受極端值的影響.
平均數(shù)的大小與一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)均有關(guān)系,任何一個(gè)數(shù)據(jù)的變動(dòng)都會(huì)相應(yīng)引起平均數(shù)的變動(dòng).
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的移動(dòng)對(duì)中位數(shù)沒(méi)有影響,中位數(shù)可能出現(xiàn)在所給數(shù)據(jù)中也可能不在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì).
實(shí)際問(wèn)題中求得的平均數(shù),眾數(shù),中位數(shù)應(yīng)帶上單位.
第三步:隨堂練習(xí):
1、在一次環(huán)保知識(shí)競(jìng)賽中,某班50名學(xué)生成績(jī)?nèi)缦卤硭荆?/p>
得分5060708090100110120
人數(shù)2361415541
分別求出這些學(xué)生成績(jī)的.眾數(shù)、中位數(shù)和平均數(shù).
2、公園里有甲、乙兩群游客正在做團(tuán)體游戲,兩群游客的年齡如下:(單位:歲)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
。1)、甲群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲,其中能較好反映甲群游客年齡特征的是。
。2)、乙群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲。其中能較好反映乙群游客年齡特征的是。
答案:1.眾數(shù)90中位數(shù)85平均數(shù)84.6
2.(1)15、15、15、眾數(shù)(2).15、5.5、6、中位數(shù)
第四步:課后練習(xí):
1、某公司的33名職工的月工資(以元為單位)如下:
職員董事長(zhǎng)副董事長(zhǎng)董事總經(jīng)理經(jīng)理管理員職員
人數(shù)11215320
工資5500500035003000250020001500
。1)、求該公司職員月工資的平均數(shù)、中位數(shù)、眾數(shù)?
(2)、假設(shè)副董事長(zhǎng)的工資從5000元提升到20000元,董事長(zhǎng)的工資從5500元提升到30000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)
(3)、你認(rèn)為應(yīng)該使用平均數(shù)和中位數(shù)中哪一個(gè)來(lái)描述該公司職工的工資水平?
2、某公司有15名員工,它們所在的部門(mén)及相應(yīng)每人所創(chuàng)的年利潤(rùn)如下表示
八年級(jí)數(shù)學(xué)下冊(cè)教案4
活動(dòng)一、創(chuàng)設(shè)情境
引入:首先我們來(lái)看幾道練習(xí)題(幻燈片)
。◤(fù)習(xí):平行線(xiàn)及三角形全等的知識(shí))
下面我們一起來(lái)欣賞一組圖片(幻燈片)
[學(xué)生活動(dòng)]觀(guān)看后答問(wèn)題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個(gè)世界變得如此美麗,那么,請(qǐng)你用兩個(gè)相同的300的三角板,看能拼出哪些圖案?)
[學(xué)生活動(dòng)]小組合作交流,拼出圖案的類(lèi)型。
同學(xué)們所拼的圖形中,除了有我們學(xué)過(guò)的三角形,還有很多四邊形,今天,我們一起來(lái)研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動(dòng)二、合作交流,探求新知
問(wèn)題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學(xué)生活動(dòng)]認(rèn)真觀(guān)察、討論、思考、推理。
鼓勵(lì)學(xué)生交流,并是試著用自己的語(yǔ)言概括出平行四邊形的定義。
學(xué)生交流,歸納:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
并說(shuō)明:平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線(xiàn)段叫它的對(duì)角線(xiàn)。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問(wèn)題(2):由平行四邊形的定義,我們知道平行四邊形的'兩組對(duì)邊分別平行,平行四邊形還有什么特征呢?
[學(xué)生活動(dòng)]動(dòng)手操作,小組演示交流。鼓勵(lì)學(xué)生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對(duì)邊相等
平行四邊形的對(duì)角相等(這里要弄清對(duì)角、對(duì)邊兩個(gè)名詞)
你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)
你能證明嗎?(幻燈片出示證明題)
[學(xué)生活動(dòng)]先分析思路尤其是輔助線(xiàn),請(qǐng)學(xué)生上黑板證明。
自己完成性質(zhì)2的證明。
活動(dòng)三、運(yùn)用新知
性質(zhì)掌握了嗎?一起來(lái)看一道題目:
嘗試練習(xí)(幻燈片)例1
[學(xué)生活動(dòng)]作嘗試性解答。
八年級(jí)數(shù)學(xué)下冊(cè)教案5
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書(shū)從畢達(dá)哥拉斯觀(guān)察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀(guān)察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的`形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
[教學(xué)目標(biāo)]
一、 知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
二、 過(guò)程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、 情感與態(tài)度目標(biāo)
通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2熟練運(yùn)用勾股定理
[教學(xué)過(guò)程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話(huà),為勾股定理的出現(xiàn)埋下伏筆。
周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問(wèn)題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋?zhuān)?由于我國(guó)古代把直角三角形中較短的直角邊稱(chēng)為勾,較長(zhǎng)的邊稱(chēng)為股,斜邊稱(chēng)為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線(xiàn)表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀(guān),它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀(guān)察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
八年級(jí)數(shù)學(xué)下冊(cè)教案6
一、 教學(xué)目標(biāo)設(shè)置
知識(shí)與技能:
1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法。
2、了解勾股定理的內(nèi)容。
3、能利用已知兩邊求直角三角形另一邊的長(zhǎng)。
過(guò)程與方法:
1、通過(guò)拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。
2、在探索活動(dòng)中,學(xué)會(huì)與人合作,并能與他人交流思維的過(guò)程和探索的結(jié)果。
情感與態(tài)度:
1、通過(guò)對(duì)勾股定理歷史的了解,對(duì)比介紹我國(guó)古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感,激勵(lì)學(xué)生奮發(fā)學(xué)習(xí)。
2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得結(jié)論的快樂(lè),鍛煉克服困難的勇氣,培養(yǎng)合作意識(shí)和探索精神。
二 教學(xué)重、難點(diǎn)
重點(diǎn):探索和證明勾股定理 難點(diǎn):用拼圖方法證明勾股定理
三、學(xué)情分析
學(xué)生對(duì)幾何圖形的觀(guān)察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識(shí),通過(guò)學(xué)習(xí)小組討論交流,能夠形成解決問(wèn)題的思路。
四、教學(xué)策略
本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問(wèn)題,鼓勵(lì)學(xué)生采用觀(guān)察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程。
五、教學(xué)過(guò)程
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
活動(dòng)和意圖
創(chuàng)設(shè)情境導(dǎo)入新課
以“航天員在太空中遇到外星人時(shí),用什么語(yǔ)言進(jìn)行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進(jìn)行和外星人溝通,為什么呢?通過(guò)一段VCR說(shuō)明原因。
[設(shè)計(jì)意圖]激發(fā)學(xué)生對(duì)勾股定理的興趣,從而較自然的引入課題。
新知探究
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
(1)同學(xué)們,請(qǐng)你也來(lái)觀(guān)察下圖中的地面,看看能發(fā)現(xiàn)些什么?
(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?
通過(guò)講述故事來(lái)進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺(jué)中進(jìn)入學(xué)習(xí)的最佳狀態(tài)。
如圖,每個(gè)小方格代表1個(gè)單位面積,我們分別以a,b,c三邊為邊長(zhǎng)作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計(jì)算正方形A、B、C面積?
(2)怎樣求出正方形面積C?
(3)觀(guān)察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形A,B,C分別移開(kāi),你能發(fā)現(xiàn)直角三角形邊長(zhǎng)a,b,c有何數(shù)量關(guān)系?
引導(dǎo)學(xué)生將邊不在格線(xiàn)上的圖形轉(zhuǎn)化為邊在格線(xiàn)上的圖形,以便于計(jì)算圖形面積.
問(wèn)題是思維的起點(diǎn)”,通過(guò)層層設(shè)問(wèn),引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
探究交流歸納
拼圖驗(yàn)證加深理解
如圖,每個(gè)小方格代表1個(gè)單位面積,我們分別以a,b,c三邊為邊長(zhǎng)作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計(jì)算正方形P、Q、R的面積?
(2)怎樣求出正方形面積R?
(3)觀(guān)察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形P,Q,R分別移開(kāi),你能發(fā)現(xiàn)直角三角形邊長(zhǎng)a,b,c有何數(shù)量關(guān)系?
由以上兩問(wèn)題可得猜想:
直角三角形兩直角邊的平方和等于斜邊的平方。
而猜想要通過(guò)證明才能成為定理
活動(dòng)探究:
(1)讓學(xué)生利用學(xué)具進(jìn)行拼圖
(2)多媒體課件展示拼圖過(guò)程及證明過(guò)程理解數(shù)學(xué)的`嚴(yán)密性。
從特殊的等腰直角三角形過(guò)渡到一般的直角三角形。
滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類(lèi)比遷移能力及探索問(wèn)題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。
通過(guò)這些實(shí)際操作,學(xué)生進(jìn)行一步加深對(duì)數(shù)形結(jié)合的理解,拼圖也會(huì)產(chǎn)生感性認(rèn)識(shí),也為論證勾股定理做好準(zhǔn)備。
利用分組討論,加強(qiáng)合作意識(shí)。
1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
2、加強(qiáng)數(shù)學(xué)嚴(yán)密教育,從而更好地理解代數(shù)與圖形相結(jié)合
應(yīng)用新知解決問(wèn)題
在應(yīng)用新知這個(gè)環(huán)節(jié),我把以往的單純求解邊長(zhǎng)之類(lèi)的題目換成了幾個(gè)運(yùn)用勾股定理來(lái)解決問(wèn)題的古算題。
把生活中的實(shí)物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認(rèn)識(shí)事物,探索問(wèn)題,解決實(shí)際的能力。
回顧小結(jié)整體感知
在最后的小結(jié)中,不但對(duì)知識(shí)進(jìn)行小結(jié)更對(duì)方法要進(jìn)行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達(dá)哥拉斯樹(shù),讓學(xué)生切身感受到其實(shí)數(shù)學(xué)與生活是緊密聯(lián)系的,進(jìn)一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。
學(xué)生通過(guò)對(duì)學(xué)習(xí)過(guò)程的小結(jié),領(lǐng)會(huì)其中的數(shù)學(xué)思想方法;通過(guò)梳理所學(xué)內(nèi)容,形成完整知識(shí)結(jié)構(gòu),培養(yǎng)歸納概括能力。
布置作業(yè)鞏固加深
必做題:
1. 完成課本習(xí)題1, 2,3題。
2. 如圖,分別以直角三角形的三邊為直徑作三個(gè)半圓,這三個(gè)半圓之間面積有何關(guān)系?為什么?
選做題:
3. 課后收集勾股定理的證明方法,下節(jié)課展示。
針對(duì)學(xué)生認(rèn)知的差異設(shè)計(jì)了有層次的作業(yè)題,既使學(xué)生鞏固知識(shí),形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
八年級(jí)數(shù)學(xué)下冊(cè)教案7
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫(huà)出一次函數(shù)的圖象?
。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線(xiàn),畫(huà)一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫(huà)出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)哪一點(diǎn)的直線(xiàn)?
。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線(xiàn)).
3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?
4.在平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象.我們畫(huà)一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過(guò)觀(guān)察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的.什么地方?
二、探究歸納
1.在畫(huà)函數(shù)的圖象時(shí),通過(guò)列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線(xiàn)與y軸與x軸的交點(diǎn).
2.求直線(xiàn)y=-2x-3與x軸和y軸的交點(diǎn),并畫(huà)出這條直線(xiàn).
分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.
解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線(xiàn)與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線(xiàn)與y軸的交點(diǎn).
過(guò)點(diǎn)(-1.5,0)和(0,-3)所作的直線(xiàn)就是直線(xiàn)y=-2x-3.
所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線(xiàn)y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.
三、實(shí)踐應(yīng)用
例1若直線(xiàn)y=-kx+b與直線(xiàn)y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線(xiàn)的表達(dá)式.
分析直線(xiàn)y=-kx+b與直線(xiàn)y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.
解因?yàn)橹本(xiàn)y=-kx+b與直線(xiàn)y=-x平行,所以k=-1,又因?yàn)橹本(xiàn)與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線(xiàn)的表達(dá)式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線(xiàn)與兩坐標(biāo)軸圍成的三角形的面積.
分析求直線(xiàn)與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?
八年級(jí)數(shù)學(xué)下冊(cè)教案8
一、學(xué)習(xí)目標(biāo)
二、學(xué)習(xí)過(guò)程
閱讀教材
獨(dú)立完成下列預(yù)習(xí)作業(yè):
1、利用分式的基本性質(zhì):將分式的分子和分母同乘適當(dāng)?shù)恼,不改變分式的值,使幾個(gè)分式化為分母相同的分式,這樣的分式變形叫做分式的通分.
2、根據(jù)你的預(yù)習(xí)和理解找出:
、倥c的最簡(jiǎn)公分母是; ②與的最簡(jiǎn)公分母是;
、叟c最簡(jiǎn)公分母是;④與的最簡(jiǎn)公分母是.
★★如何確定最簡(jiǎn)公分母?一般是取各分母的所有因式的次冪的積
三、合作交流,解決問(wèn)題:
1、通分:⑴與⑵,
2、通分:⑴與; ★⑵,.
四、課堂測(cè)控:
1、分式和的最簡(jiǎn)公分母是.分式和的最簡(jiǎn)公分母是.
2、化簡(jiǎn):
3、分式,,,中已為最簡(jiǎn)分式的有( )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
4、化簡(jiǎn)分式的結(jié)果為( )
A、 B、 C、 D、
5、若分式的分子、分母中的x與y同時(shí)擴(kuò)大2倍,則分式的`值( )
A、擴(kuò)大2倍B、縮小2倍C、不變D、是原來(lái)的2倍
6、不改變分式的值,使分式的各項(xiàng)系數(shù)化為整數(shù),分子、分母應(yīng)乘以( )
A、10 B、9 C、45 D、90
7、不改變分式的值,使分子、分母次項(xiàng)的系數(shù)為整數(shù),正確的是( )
A、 B、 C、 D、
8、通分:
、排c⑵與
八年級(jí)數(shù)學(xué)下冊(cè)教案9
一、教學(xué)內(nèi)容
1、教學(xué)內(nèi)容分析:二次根式是在數(shù)的開(kāi)方的基礎(chǔ)上展開(kāi)的,是算術(shù)平方根的抽象與擴(kuò)展,同時(shí)又為勾股定理和解一元二次方程打下基礎(chǔ).
2、學(xué)生情況分析:本節(jié)課是二次根式的第一課時(shí),是在學(xué)生學(xué)方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開(kāi)方與乘方互為逆運(yùn)算的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的概念. 它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).對(duì)此班級(jí)中已初步形成合作交流、敢于探索與實(shí)踐的良好學(xué)風(fēng),學(xué)生間互相提問(wèn)的互動(dòng)氣氛較濃.
二、教學(xué)設(shè)計(jì)理念
根據(jù)基礎(chǔ)教育課程改革的具體目標(biāo),結(jié)合我校初二學(xué)生的實(shí)際情況,改變課程過(guò)于注重知識(shí)傳授的傾向,強(qiáng)調(diào)形成積極主動(dòng)的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和體驗(yàn),實(shí)施“三學(xué)六步”課堂改革教學(xué)模式.
三、教學(xué)目標(biāo)
1、知識(shí)與技能:
。1)了解二次根式的概念,理解二次根式有意義的條件,并會(huì)求二次根式中所含字母的取值范圍;
。2)理解二次根式的非負(fù)性.
2、過(guò)程與方法:通過(guò)對(duì)學(xué)、群學(xué)等方式培養(yǎng)學(xué)生分析、概括等能力.
情感態(tài)度與價(jià)值觀(guān):培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識(shí)和樂(lè)于探索、積極鉆研的科學(xué)精神、合作精神,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
四、教學(xué)重點(diǎn)、難點(diǎn)
1、教學(xué)重點(diǎn):了解二次根式的概念,二次根式有意義的條件,并會(huì)求二次根式中所含字母的取值范圍
2、教學(xué)難點(diǎn):理解二次根式的雙重非負(fù)性
五、教學(xué)方法、手段
1、教學(xué)方法:探究法、討論法、發(fā)現(xiàn)法
2、教學(xué)手段:課件(ppt)
六、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
問(wèn)題1 你能用帶有根號(hào)的的式子填空嗎?
。1)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開(kāi)始落下的高度h(單位:m)滿(mǎn)足關(guān)系,如果用含有h 的式子表示 t ,則t= _____.
。2)下球體過(guò)球心的橫截面面積為S,則橫截面圓形的半徑r為 .
。3)面積為3 的.正方形的邊長(zhǎng)為_(kāi)____,面積為S 的正方形的邊長(zhǎng)為_(kāi)____.
【師生互動(dòng)】:學(xué)生獨(dú)立思考,用算術(shù)平方根表示結(jié)果,教師適當(dāng)引導(dǎo)和評(píng)價(jià).
【設(shè)計(jì)意圖】:讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.
探究新知,講授新課
1.抽象概括,形成概念
問(wèn)題2 上面所得的代數(shù)式:,它們的共同特點(diǎn)是什么?
【師生互動(dòng)】:學(xué)生獨(dú)立思考并積極發(fā)言,教師歸納總結(jié).
【設(shè)計(jì)意圖】:通過(guò)歸納總結(jié)引出二次根式的概念.
問(wèn)題3 根據(jù)以前所學(xué)知識(shí),理解二次根式的定義,并且要注意什么.
【師生互動(dòng)】:學(xué)生小組討論并且小組長(zhǎng)做好記錄,老師歸納總結(jié).
【設(shè)計(jì)意圖】:加深對(duì)二次根式的理解.
2.辨析概念,應(yīng)用鞏固
問(wèn)題4 (辯一辯) 判斷給出式子是不是二次根式:①;
、;③;④;⑤;⑥
【師生互動(dòng)】:學(xué)生獨(dú)立思考并積極發(fā)言,并對(duì)于他們的答案做出正確地評(píng)價(jià),給予必要的鼓勵(lì).
【設(shè)計(jì)意圖】:該題是利用搶答來(lái)調(diào)動(dòng)課堂氣氛,理解二次根式的定義.
問(wèn)題5 根據(jù)要求編寫(xiě)二次根式:
(1)請(qǐng)寫(xiě)出一個(gè)你喜歡的二次根式;
請(qǐng)寫(xiě)出一個(gè)被開(kāi)方數(shù)含x的二次根式.;
請(qǐng)你寫(xiě)出一個(gè)被開(kāi)方數(shù)含x,且當(dāng)x為任何實(shí)數(shù)的二次根式.
【師生互動(dòng)】:學(xué)生獨(dú)立思考并積極發(fā)言,其他同學(xué)來(lái)檢驗(yàn)是否編寫(xiě)正確.
【設(shè)計(jì)意圖】:設(shè)計(jì)開(kāi)放性題開(kāi)拓學(xué)生思維,進(jìn)一步加深對(duì)二次根式的理解.
靈活運(yùn)用,鞏固提高
問(wèn)題6 當(dāng)x是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:
【師生互動(dòng)】:
。1)學(xué)生口答,老師板書(shū)規(guī)范解題格式,(2)(3)學(xué)生演板.學(xué)生完成之后小組討論結(jié)果的正確性,同時(shí)對(duì)演板的同學(xué)做出評(píng)價(jià),老師再適時(shí)補(bǔ)充,(2)(3)評(píng)價(jià)增加一道變式,讓學(xué)生能靈活運(yùn)用知識(shí).最后再歸納這類(lèi)式子有意義要注意:
。1)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù);
。2)分母中含有字母時(shí),要保證分母不為0.
【設(shè)計(jì)意圖】:本題強(qiáng)化學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解,同時(shí)考查學(xué)生的靈活運(yùn)用的能力,訓(xùn)練學(xué)生的思維.
發(fā)散思維,拓展延伸
問(wèn)題7 已知實(shí)數(shù)x,y滿(mǎn)足,求:
。1)x的取值范圍;
。2)以x,y的值為兩邊長(zhǎng)的等腰三角形的周長(zhǎng).
【師生互動(dòng)】:學(xué)生先獨(dú)立思考,再小組合作,將答案寫(xiě)在白板上,并請(qǐng)小組兩位成員上臺(tái)展示,其他同學(xué)提出質(zhì)疑,補(bǔ)充,老師適當(dāng)引導(dǎo)點(diǎn)評(píng).
【設(shè)計(jì)意圖】:本題第一問(wèn)進(jìn)一步加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解;第二問(wèn)滲透分類(lèi)思想,通過(guò)小組合作,上臺(tái)展示體現(xiàn)學(xué)生為主體,發(fā)揮學(xué)生的能動(dòng)性.
問(wèn)題8 (走進(jìn)中考)已知,則 p(x,y)是第 象限.
【師生互動(dòng)】:學(xué)生先獨(dú)立思考講解思路,老師適當(dāng)點(diǎn)評(píng).
【設(shè)計(jì)意圖】:本題主要考察
課堂小結(jié),盤(pán)點(diǎn)收獲
一路下來(lái),我們結(jié)識(shí)了很多新知識(shí),你能談?wù)勛约旱氖斋@嗎?說(shuō)一說(shuō),讓大家一起來(lái)分享.
【師生互動(dòng)】:學(xué)生舉手發(fā)言,老師點(diǎn)評(píng)并鼓勵(lì).
【設(shè)計(jì)意圖】:學(xué)生總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),幫助學(xué)生把握知識(shí)要點(diǎn),理清知識(shí)脈絡(luò),體會(huì)數(shù)學(xué)中的分類(lèi)思想.
作業(yè)設(shè)計(jì),鞏固提高
必做題:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(寫(xiě)序號(hào))
代數(shù)式有意義,則字母x的取值范圍是 .
3.代數(shù)式的值為0,則a= .
選做題:1.已知,則的值為 .
2.若式子 有意義,則P(a,b)在第 象限.
小組合作題:
1.已知m,n滿(mǎn)足 ,求:(1)m,n的值.
(2)將m,n的值 代入并化簡(jiǎn):
。3)請(qǐng)選一個(gè)你喜歡的x的值代入求值.
【設(shè)計(jì)意圖】:氣氛通過(guò)分層作業(yè),教師能及時(shí)了解學(xué)生對(duì)本節(jié)知識(shí)的掌握情況.必做題和選做題如果上課有時(shí)間打算用砸金蛋的形式調(diào)動(dòng)課堂.
。┌鍟(shū)設(shè)計(jì)
16.1.1 二次根式 定義:形如 的式子叫做 二次根式 注:(雙重非負(fù)性) (老師板書(shū)) (學(xué)生演板)
八年級(jí)數(shù)學(xué)下冊(cè)教案10
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.
問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類(lèi)似的數(shù)量關(guān)系呢?
二、探究歸納
問(wèn)題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀(guān)察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問(wèn)題3收音機(jī)刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:
觀(guān)察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,
或者說(shuō).
(2)波長(zhǎng)l越大,頻率f就 越小 .
問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿(mǎn)足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的'半徑越大,它的面積就越大.
在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫(huà)了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫(huà)氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴(lài),密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
八年級(jí)數(shù)學(xué)下冊(cè)教案11
一、回顧交流,合作學(xué)習(xí)
【活動(dòng)方略】
活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.
【問(wèn)題探究1】(投影顯示)
飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過(guò)了20秒,飛機(jī)距離小明頭頂5000米,問(wèn):飛機(jī)飛行了多少千米?
思路點(diǎn)撥:根據(jù)題意,可以先畫(huà)出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問(wèn)題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來(lái)計(jì)算出BC的長(zhǎng).(3000千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問(wèn)題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).
學(xué)生活動(dòng):獨(dú)立完成“問(wèn)題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.
【問(wèn)題探究2】(投影顯示)
一個(gè)零件的'形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?
思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過(guò)勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.
【活動(dòng)方略】
教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.
學(xué)生活動(dòng):思考后,完成“問(wèn)題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個(gè)零件符合要求.
【問(wèn)題探究3】
甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?
思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線(xiàn)與乙所走的路線(xiàn)互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.
學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示
八年級(jí)數(shù)學(xué)下冊(cè)教案12
例題講解
引入問(wèn)題:有甲乙兩種客車(chē),甲種客車(chē)每車(chē)能拉30人,乙種客車(chē)每車(chē)能拉40人,現(xiàn)在有400人要乘車(chē),
1、你有哪些乘車(chē)方案?
2、只租8輛車(chē),能否一次把客人都運(yùn)送走?
問(wèn)題2;怎樣租車(chē)
某學(xué)校計(jì)劃在總費(fèi)用2300元的限額內(nèi),利用汽車(chē)送234名學(xué)生和6名教師集體外出活動(dòng),每輛汽車(chē)上至少有1名教師,F(xiàn)有甲、乙兩種大客車(chē),它們的載客量和租金如表:
甲種客車(chē)乙種客車(chē)
載客量(單位:人/輛)4530
租金(單位:元/輛)400280
。1)共需租多少輛汽車(chē)?
。2)給出最節(jié)省費(fèi)用的租車(chē)方案。
分析;
。1)要保證240名師生有車(chē)坐
。2)要使每輛汽車(chē)上至少要有1名教師
根據(jù)(1)可知,汽車(chē)總數(shù)不能小于____;根據(jù)(2)可知,汽車(chē)總數(shù)不能大于____。綜合起來(lái)可知汽車(chē)總數(shù)為_____。
設(shè)租用x輛甲種客車(chē),則租車(chē)費(fèi)用y(單位:元)是x的函數(shù),即
y=400x+280(6-x)
化簡(jiǎn)為:y=120x+1680
討論:
根據(jù)問(wèn)題中的條件,自變量x的取值應(yīng)有幾種可能?
為使240名師生有車(chē)坐,x不能小于____;為使租車(chē)費(fèi)用不超過(guò)2300元,X不能超過(guò)____。綜合起來(lái)可知x的.取值為____。
在考慮上述問(wèn)題的基礎(chǔ)上,你能得出幾種不同的租車(chē)方案?為節(jié)省費(fèi)用應(yīng)選擇其中的哪種方案?試說(shuō)明理由。
方案一:
4兩甲種客車(chē),2兩乙種客車(chē)
y1=120×4+1680=2160
方案二:
5兩甲種客車(chē),1輛乙種客車(chē)
八年級(jí)數(shù)學(xué)下冊(cè)教案13
一、教學(xué)目標(biāo)
(一)知識(shí)目標(biāo)
1、創(chuàng)設(shè)情境引出問(wèn)題,激起學(xué)生探索直角三角形三邊的關(guān)系的興趣。
2、讓學(xué)生帶著問(wèn)題體驗(yàn)勾股定理的探索過(guò)程,并正確運(yùn)用勾股定理解決相關(guān)問(wèn)題。
(二)能力目標(biāo)
1、培養(yǎng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí)和能力。
2、能把已有的數(shù)學(xué)知識(shí)運(yùn)用于勾股定理的探索過(guò)程。
3、能熟練掌握勾股定理及其變形公式,并會(huì)根據(jù)圖形找出直角三角形及其三邊,從而正確運(yùn)用勾股定理及其變形公式于圖形解決相關(guān)問(wèn)題。 (三)情感目標(biāo)
1、培養(yǎng)學(xué)生的自主探索精神,提高學(xué)生合作交流能力和解決問(wèn)題的能力。
2、讓學(xué)生感受數(shù)學(xué)文化的價(jià)值和中國(guó)傳統(tǒng)數(shù)學(xué)的成就,激發(fā)學(xué)生的愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感,教育學(xué)生奮發(fā)圖強(qiáng)、努力學(xué)習(xí)。
二、教學(xué)重點(diǎn)
通過(guò)圖形找出直角三角形三邊之間的關(guān)系,并正確運(yùn)用勾股定理及其變形公式解決相關(guān)問(wèn)題。
三、教學(xué)難點(diǎn)
運(yùn)用已掌握的相關(guān)數(shù)學(xué)知識(shí)探索勾股定理。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境,引出問(wèn)題
想一想:
小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?你能解釋這是為什么嗎?
要解決這個(gè)問(wèn)題,必須掌握這節(jié)課的內(nèi)容。這節(jié)課我們要探討的是直角三角形的三邊有什么關(guān)系。
- 1 -
(二) 探索交流,得出新知
探討之前我們一起來(lái)回憶一下直角三角形的三邊:
如圖,在Rt △ABC 中,∠C=90° ∠C 所對(duì)的邊AB :斜邊c ∠A 所對(duì)的邊BC :直角邊a ∠B 所對(duì)的邊AC :直角邊b
問(wèn)題:在直角三角形中,a 、b 、c 三條邊之間到底存在著怎樣的關(guān)系呢? (1)我們先來(lái)探討等腰直角三角形的三邊之間的關(guān)系。
這個(gè)關(guān)系2500年前已經(jīng)有數(shù)學(xué)家發(fā)現(xiàn)了,今天我們把當(dāng)時(shí)的情景重現(xiàn),A
C
a
B
請(qǐng)同學(xué)們也來(lái)看一看、找一找。
如圖
數(shù)學(xué)家畢達(dá)哥拉斯的發(fā)現(xiàn):S A +SB =SC
即:a 2+b2=c2
也就是說(shuō):在等腰直角三角形中,兩直角邊的平方和等于斜邊的平方。
議一議:如果是一般的直角三角形,兩直角邊的平方和是否還會(huì)等于斜邊的平方? 如圖
分析: SA +SB =SC 是否成立?
(1)正方形A 中含有 個(gè)小方格,即S A = 個(gè)單位面積。 (2)正方形B 中含有 個(gè)小方格,即S B = 個(gè)單位面積。 (3)由上可得:S A +SB = 個(gè)單位面積 問(wèn)題:正方形C 的面積要如何求呢?與同伴進(jìn)行交流。 方法一:
“補(bǔ)”成一個(gè)邊長(zhǎng)為整數(shù)格的大正方形,再減去四個(gè)直角邊為整數(shù)格的三角形 方法二:分割成四個(gè)直角邊為整數(shù)格的三角形,再加上一個(gè)小方格。 綜上:
我們得出:S A +SB =SC
即:a +b=c
2
2
2
C
- 2 -
a
B
也就是說(shuō):在一般的直角三角形中,兩直角邊的平方和等于斜邊的平方。
概括:
勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方
數(shù)學(xué)語(yǔ)言描述:
如圖,在Rt △ABC 中,a 2+b2=c2
(用多媒體簡(jiǎn)單介紹勾股定理的名稱(chēng)由來(lái)、中國(guó)古代的`數(shù)學(xué)成就及勾股定理的“無(wú)字證明”) (三)應(yīng)用新知,解決問(wèn)題
例1:求出下列直角三角形中未知邊x 的長(zhǎng)度 5
注意:要根據(jù)圖表找出未知邊是斜邊還是直角邊,勾股定理要用對(duì)。
從上面這兩道例題,我們知道了在直角三角形中,任意已知兩邊,可以求第三邊。 即勾股定理的變形公式: 如圖,在Rt △ABC 中
(1)若已知a ,b 則求c 的公式為:c =(2)若已知a ,c 則求b 的公式為:b =(3)若已知b ,c 則求a 的公式為:a =
a +b c -a c -b
22
22
2
C
a
B
2
例2: 如圖,在直角三角形ABC 中, ∠C=900, A
(1) 已知: a=5, b=12, 求c;
(2) 已知: b=8,c=10 , 求(3) 已知: a=
3, c=2, 求 請(qǐng)同學(xué)們利用這節(jié)課學(xué)到的勾股定理及推論解決我們課前提出的問(wèn)題:
電視屏幕:
解:在Rt △ABC 中,AB=46厘米,BC=58厘米
由勾股定理得:AC=
?
D
A
46AB
2
+BC
2
2
=46+58
2
≈74(厘米)
∴不同意小明的想法。
- 3 -
58厘米
C
(四)歸納總結(jié)
(1)這節(jié)課你學(xué)到了什么知識(shí)?
、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒。 ②在直角三角形中,任意已知兩邊,可以用勾股定理求第三邊。 (2) 運(yùn)用“勾股定理”應(yīng)注意什么問(wèn)題? ①要利用圖形找到未知邊所在的直角三角形; ②看清未知邊是所在直角三角形的哪一邊; ③勾股定理要用對(duì)。
(五)練習(xí)鞏固
(1)、如圖,受臺(tái)風(fēng)“麥莎”影響,一棵樹(shù)在離地面8米處斷裂, 樹(shù)的頂部落在離樹(shù)跟底部6米處,這棵樹(shù)折斷前有多高?
(2)、學(xué)校有一塊長(zhǎng)方形的花圃,經(jīng)常有同學(xué)為了少走幾步而走捷徑,于是在草坪上開(kāi)辟了一條“新路”,他們這樣走少走了______步.
(每?jī)刹郊s為1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 則BC 的長(zhǎng)為_(kāi)__________。 (六)作業(yè)
1. A、B 、C 組:課本第69、70頁(yè),習(xí)題18.1 第1, 2,3題. 2. A、B :練習(xí)冊(cè)33、34頁(yè)
3.A :課本第71頁(yè)“閱讀與思考”,了解勾股定理的多種證法。
八年級(jí)數(shù)學(xué)下冊(cè)教案14
1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀(guān)察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:
類(lèi)似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:
。ā0,b0)
使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過(guò)程.
類(lèi)似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,
請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?
與學(xué)生一起寫(xiě)清解題過(guò)程,提醒他們被開(kāi)方式一定要開(kāi)盡.
對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法
增強(qiáng)學(xué)生的自信心,并從一開(kāi)始就使他們參與到推導(dǎo)過(guò)程中來(lái).
對(duì)學(xué)生進(jìn)一步強(qiáng)化被開(kāi)方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情境師生行為設(shè)計(jì)意圖
活動(dòng)二自我檢測(cè)
活動(dòng)三挑戰(zhàn)逆向思維
把反過(guò)來(lái),就得到
。ā0,b0)
利用它就可以進(jìn)行二次根式的`化簡(jiǎn).
例2化簡(jiǎn):
。1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡(jiǎn):
(1)(2)活動(dòng)四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過(guò)程,教師將過(guò)程寫(xiě)在黑板上.
請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.
請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.
此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.
讓學(xué)困生在自己做題時(shí)有一個(gè)參照.
充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問(wèn)題解決.
八年級(jí)數(shù)學(xué)下冊(cè)教案15
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)
1.用分式表示生活中的一些量.
2.分式的基本性質(zhì)及分式的有關(guān)運(yùn)算法則.
3.分式方程的概念及其解法.
4.列分式方程,建立現(xiàn)實(shí)情境中的數(shù)學(xué)模型.
。ǘ┠芰τ(xùn)練要求
1.使學(xué)生有目的的梳理知識(shí),形成這一章完整的知識(shí)體系.
2.進(jìn)一步體驗(yàn)“類(lèi)比”與“轉(zhuǎn)化”在學(xué)習(xí)分式的基本性質(zhì)、分式的運(yùn)算法則及其分式方程解法過(guò)程中的重要作用.
3.提高學(xué)生的歸納和概括能力,形成反思自己學(xué)習(xí)過(guò)程的意識(shí).
。ㄈ┣楦信c價(jià)值觀(guān)要求
使學(xué)生在總結(jié)學(xué)習(xí)經(jīng)驗(yàn)和活動(dòng)經(jīng)驗(yàn)的過(guò)程中,體驗(yàn)因?qū)W習(xí)方法的大力改進(jìn)而帶來(lái)的快樂(lè),成為一個(gè)樂(lè)于學(xué)習(xí)的人.
●教學(xué)重點(diǎn)
1.分式的概念及其基本性質(zhì).
2.分式的運(yùn)算法則.
3.分式方程的概念及其解法.
4.分式方程的應(yīng)用.
●教學(xué)難點(diǎn)
1.分式的.運(yùn)算及分式方程的解法.
2.分式方程的應(yīng)用.
●教學(xué)方法
討論——交流法
討論交流本章學(xué)習(xí)過(guò)程中的經(jīng)驗(yàn)和收獲,在反思過(guò)程中建立知識(shí)體系.
●教具準(zhǔn)備
投影片兩張,實(shí)物投影儀
第一張:?jiǎn)栴}串,(記作§3.5A)
第二張:例題分析,(記作§3.5B)
●教學(xué)過(guò)程
、.提出問(wèn)題,回顧本章的知識(shí).
出示投影片(§3.5A)
問(wèn)題串:
1.實(shí)際生活中的一些量可以用分式表示,一些問(wèn)題可以通過(guò)列分式方程解決,請(qǐng)舉一例.
2.分式的性質(zhì)及有關(guān)運(yùn)算法則與分?jǐn)?shù)有什么異同?
3.如何解分式方程?它與解一元一次方程有何聯(lián)系與區(qū)別?
。蹘煟萃瑢W(xué)們可針對(duì)以上問(wèn)題,以小組為單位討論、交流,然后在全班進(jìn)行交流.
。ń處熆蓞⑴c于學(xué)生的討論中,注意掃除他們學(xué)習(xí)中常犯的錯(cuò)誤)
。凵輰(shí)際生活中的一些量可以用分式表示,例如(用實(shí)物投影)
某人在外面晨練,有m分鐘,他每分鐘走a米;有n分鐘,他每分鐘跑b米.求此人晨練平均每分鐘行多少米?
。凵菸覀兘M來(lái)回答此問(wèn)題,此人晨練時(shí)平均每分鐘行米.
我們組也舉出一個(gè)例子:長(zhǎng)方形的面積為8m2,長(zhǎng)為pm,寬為_(kāi)___________m.
。凵輵(yīng)為m.
。蹘煟萃瑢W(xué)們舉的例子都很有特色,誰(shuí)還能舉.
。凵萑绻成唐方祪r(jià)x%后的售價(jià)為a元,那么該商品的原價(jià)為多少元?
[生]原價(jià)為元.……
。蹘煟荻际欠质.分式有什么特點(diǎn)?和整式有何區(qū)別?
。凵菡紸除以整式B,可表示成的形式,如果除式B中含有字母,則稱(chēng)是分式.而整式分母中不含字母.
。凵輰(shí)際生活中的一些問(wèn)題可用分式方程來(lái)解決.例如(用實(shí)物投影儀)
某車(chē)間加工1200個(gè)零件后,采用了新工藝,工效是原來(lái)的1.5倍,這樣加工同樣多的零件就少用10h,采用新工藝前、后每時(shí)分別加工多少個(gè)零件?
解:設(shè)采用新工藝前、后每時(shí)分別加工x個(gè),1.5x個(gè),根據(jù)題意,得
【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:
八年級(jí)數(shù)學(xué)下冊(cè)教案05-16
八年級(jí)數(shù)學(xué)下冊(cè)教案01-10
八年級(jí)下冊(cè)數(shù)學(xué)的教案優(yōu)秀02-27
八年級(jí)數(shù)學(xué)下冊(cè)教案(精華)05-22
小學(xué)數(shù)學(xué)下冊(cè)教案11-15
小學(xué)數(shù)學(xué)下冊(cè)教案12-27
八年級(jí)下冊(cè)最新湘教版數(shù)學(xué)教案02-29