久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

八年級數(shù)學(xué)教案

時間:2024-03-05 07:09:28 數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)教案

  作為一位不辭辛勞的人民教師,編寫教案是必不可少的,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級數(shù)學(xué)教案

八年級數(shù)學(xué)教案1

  學(xué)習(xí)重點:函數(shù)的概念 及確定自變量的取值范圍。

  學(xué)習(xí)難點:認(rèn)識函數(shù),領(lǐng)會函數(shù)的意義。

  【自主復(fù)習(xí)知識準(zhǔn)備】

  請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。

  【自主探究知識應(yīng)用】

  請看書72——74頁內(nèi)容,完成下列問題:

  1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

  2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。

  3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

  歸納:一般的',在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。

  補充小結(jié):

  (1)函數(shù)的定義:

  (2)必須是一個變化過程;

  (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應(yīng)。

  三、鞏固與拓展:

  例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

  (1)寫出表示y與x的函數(shù)關(guān)系式.

  (2)指出自變量x的取值范圍.

  (3) 汽車行駛200千米時,油箱中還有多少汽油?

  【當(dāng)堂檢測知識升華】

  1、判斷下列變量之間是不是函數(shù)關(guān)系:

  (1)長方形的寬一定時,其長與面積;

  (2)等腰三角形的底邊長與面積;

  (3)某人的年齡與身高;

  2、寫出下列函數(shù)的解析式.

  (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

  (2)汽車加油時,加油槍的流量為10L/min.

 、偃绻佑颓埃拖淅镞有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數(shù)關(guān)系;

 、谌绻佑蜁r,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數(shù)關(guān)系.

  (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

  八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實際和教材的實際進行有針對性的設(shè)置,希望大家喜歡!

八年級數(shù)學(xué)教案2

  一、教學(xué)目標(biāo):

  1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

  2、掌握整數(shù)指數(shù)冪的運算性質(zhì)、

  3、會用科學(xué)計數(shù)法表示小于1的數(shù)、

  二、教學(xué)重點:

  掌握整數(shù)指數(shù)冪的運算性質(zhì)、

  三、難點:

  會用科學(xué)計數(shù)法表示小于1的數(shù)、

  四、情感態(tài)度與價值觀:

  通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務(wù)于實踐、能利用事物之間的類比性解決問題、

  五、教學(xué)過程:

 。ㄒ唬┱n堂引入

  1、回憶正整數(shù)指數(shù)冪的運算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));

  2、回憶0指數(shù)冪的.規(guī)定,即當(dāng)a≠0時,a0 = 1、

  3、你還記得1納米=10?9米,即1納米=米嗎?

  4、計算當(dāng)a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、

  (二)總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、 事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的、

  (三)科學(xué)記數(shù)法:

  我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)、 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?1、

八年級數(shù)學(xué)教案3

  【教學(xué)目標(biāo)】

  一、教學(xué)知識點

  1.命題的組成.

  2.命題真假的判斷。

  二、能力訓(xùn)練要求:

  1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

  2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法

  三、情感與價值觀要求:

  1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一

  2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

  3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值

  【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論

  【教學(xué)難點】理解判斷一個真命題需要證明

  【教學(xué)方】探討、合作交流

  【教具準(zhǔn)備】投影片

  【教學(xué)過程】

  一、情景創(chuàng)設(shè)、引入新課

  師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

  新課:

  (1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

  1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。

  2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

  3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

  4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

  5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

  師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

  二、例題講解:

  例1:師:下列命題的條件是什么?結(jié)論是什么?

  1.如果兩個角相等,那么他們是對頂角;

  2.如果a>b,b>c,那么a=c;

  3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;

  4.菱形的四條邊都相等;

  5.全等三角形的面積相等。

  例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。

  2:有的命題的描述沒有用“如果……那么……”的`形式,在分析時可以擴展成這種形式,以分清條件和結(jié)論。

  例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

  師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

  教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

  三、思維拓展:

  拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。

  教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程

 。1)首先給學(xué)生介紹歐幾里得的《原本》

  (2)引出概念:公理、定理,證明

 。3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性

 。4)給出本套教材所選用如下6個命題作為公理

 。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

  拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

  建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

  練習(xí)書p197習(xí)題6.31

  四、問題式總結(jié)

  師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

  建議:可對學(xué)生進行提示性引導(dǎo),如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

  作業(yè):書p197習(xí)題6.32、3

  板書設(shè)計:

  定義與命題

  課時2

  條件

  1.命題的結(jié)構(gòu)特征

  結(jié)論

  1.假命題——可以舉反例

  2.命題真假的判別

  2.真命題——需要證明 學(xué)生活動一——

  探索命題的結(jié)構(gòu)特征

  學(xué)生觀察、分組討論,得出結(jié)論:

 。1)這五個命題都是用“如果……那么……”形式敘述的

  (2)這五個命題都是由已知得到結(jié)論

 。3)這五個命題都有條件和結(jié)論

  學(xué)生活動二——

  探索命題的條件和結(jié)論

  生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

  學(xué)生活動三

  探索命題的真假——如何判斷假命題

  生:可以舉一個例子,說明命題1是不正確的,如圖:

  已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

  生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

  生:由此說明:命題1、2是不正確的

  生:命題3、4、5是正確的

  學(xué)生活動四

  探索命題的真假——如何證實一個命題是真命題

  學(xué)生交流:

  生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法

  生:這些方法往往并不可靠

  生:能夠根據(jù)已知道的真命題證實呢?

  生:那已經(jīng)知道的真命題又是如何證實的?

  生:那可怎么辦呢?

  生:可通過證明的方法

  學(xué)生分小組討論得出結(jié)論

  生:命題的結(jié)構(gòu)特征:條件和結(jié)論

  生:命題有真假之分

  生:可以通過舉反例的方法判斷假命題

  生:可通過證明的方法證實真命題

八年級數(shù)學(xué)教案4

  一、教學(xué)目標(biāo):

  1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題

  2、會用計算器求加權(quán)平均數(shù)的值

  3、會運用樣本估計總體的方法來獲得對總體的認(rèn)識

  二、重點、難點:

  1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  三、教學(xué)過程:

  1、復(fù)習(xí)

  組中值的定義:上限與下限之間的中點數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2.

  因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義.

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計算量.

  為了更好的'理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義.

  2、教材P140探究欄目的意圖

 、、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法.

 、凇⒓由盍藢Α皺(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).

  這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.

  3、教材P140的思考的意圖.

 、、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題。

 、、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.

  4、利用計算器計算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計算器使用方法產(chǎn)生明顯對比.一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器.所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單.統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了.

  5、運用樣本估計總體

  要使學(xué)生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認(rèn)識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況.

八年級數(shù)學(xué)教案5

  一、回顧交流,合作學(xué)習(xí)

  【活動方略】

  活動設(shè)計:教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進入復(fù)習(xí)軌道.然后進行小組匯報,匯報時可借助投影儀,要求學(xué)生上臺匯報,最后教師歸納.

  【問題探究1】(投影顯示)

  飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

  思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的`路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)

  【活動方略】

  教師活動:操作投影儀,引導(dǎo)學(xué)生解決問題,請兩位學(xué)生上臺演示,然后講評.

  學(xué)生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

  思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

  【活動方略】

  教師活動:操作投影儀,關(guān)注學(xué)生的思維,請兩位學(xué)生上講臺演示之后再評講.

  學(xué)生活動:思考后,完成“問題探究2”,小結(jié)方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個零件符合要求.

  【問題探究3】

  甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠(yuǎn)?

  思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動方略】

  教師活動:操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請兩位學(xué)生上講臺“板演”.

  學(xué)生活動:課堂練習(xí),與同伴交流或舉手爭取上臺演示

八年級數(shù)學(xué)教案6

  教學(xué)目標(biāo):

  【知識與技能】

  1、理解并掌握等腰三角形的性質(zhì)。

  2、會用符號語言表示等腰三角形的性質(zhì)。

  3、能運用等腰三角形性質(zhì)進行證明和計算。

  【過程與方法】

  1、通過觀察等腰三角形的對稱性,發(fā)展學(xué)生的形象思維。

  2、通過實踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動經(jīng)驗,感受數(shù)學(xué)思考過程的條理性,發(fā)展學(xué)生的合情推理能力。

  3、通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高學(xué)生運用幾何語言表達(dá)問題的,運用知識和技能解決問題的能力。

  【情感態(tài)度】

  引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中取得成功的體驗。

  【教學(xué)重點】

  等腰三角形的性質(zhì)及應(yīng)用。

  【教學(xué)難點】

  等腰三角形的證明。

  教學(xué)過程:

  一、情境導(dǎo)入,初步認(rèn)識

  問題1什么叫等腰三角形?它是一個軸對稱圖形嗎?請根據(jù)自己的理解,利用軸對稱的知識,自己做一個等腰三角形。要求學(xué)生獨立思考,動手作圖后再互相交流評價。

  可按下列方法做出:

  作一條直線l,在l上取點A,在l外取點B,作出點B關(guān)于直線l的對稱點C,連接AB,AC,CB,則可得到一個等腰三角形。

  問題2每位同學(xué)請拿出事先準(zhǔn)備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點?

  教師指導(dǎo):上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

  把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說說你的猜想。

  在一張白紙上任意畫一個等腰三角形,把它剪下來,請你試著折一折。你的猜想仍然成立嗎?

  教學(xué)說明:通過學(xué)生的動手操作與觀察發(fā)現(xiàn),加深學(xué)生對等腰三角形性質(zhì)的理解。

  二、思考探究,獲取新知

  教師依據(jù)學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):

 、佟螧=∠C→兩個底角相等。

 、贐D=CD→AD為底邊BC上的中線。

 、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。

  ∠ADB=∠ADC=90°→AD為底邊BC上的高。

  指導(dǎo)學(xué)生用語言敘述上述性質(zhì)。

  性質(zhì)1等腰三角形的兩個底角相等(簡寫成:“等邊對等角”)。

  性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。

  教師指導(dǎo)對等腰三角形性質(zhì)的證明。

  1、證明等腰三角形底角的性質(zhì)。

  教師要求學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)學(xué)生分析思路時強調(diào):

  (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個三角形。

  (2)添加輔助線的`方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

  2、證明等腰三角形“三線合一”的性質(zhì)。

  【教學(xué)說明】在證明中,設(shè)計輔助線是關(guān)鍵,引導(dǎo)學(xué)生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點,要求學(xué)生板書證明過程,以體會一題多解帶來的體驗。

  三、典例精析,掌握新知

  例如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

  解:∵AB=AC,BD=BC=AD,

  ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

  從而∠ABC=∠C=∠BDC=2x。

  于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°

  于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

  【教學(xué)說明】等腰三角形“等邊對等角”及“三線合一”性質(zhì),可以實現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過程中,學(xué)會從復(fù)雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。

  四、運用新知,深化理解

  第1組練習(xí):

  1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。

  如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。

  2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。

  第2組練習(xí):

  1、如果△ABC是軸對稱圖形,則它一定是( )

  A、等邊三角形

  B、直角三角形

  C、等腰三角形

  D、等腰直角三角形

  2、等腰三角形的一個外角是100°,它的頂角的度數(shù)是( )

  A、80° B、20°

  C、80°和20° D、80°或50°

  3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個等腰三角形的邊長。

  4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

  【教學(xué)說明】

  等腰三角形解邊方面的計算類型較多,引導(dǎo)學(xué)生見識不同類型,并適時概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類討論思想的應(yīng)用。

  【答案】

  第1組練習(xí)答案:

  1、(1)72°;(2)30°

  2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

  3、∠B=77°,∠C=38、5°

  第2組練習(xí)答案:

  1、C

  2、C

  3、設(shè)三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三邊長為4cm,6cm和6cm。

  4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。

  四、師生互動,課堂小結(jié)

  這節(jié)課主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用。請學(xué)生表述性質(zhì),提醒每個學(xué)生要靈活應(yīng)用它們。

  學(xué)生間可交流體會與收獲。

八年級數(shù)學(xué)教案7

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.

  2.內(nèi)容解析

  三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.

  本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系.

  本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的對應(yīng)元素.

  (2)理解并且靈活應(yīng)用三角形三邊關(guān)系.

  2.教學(xué)目標(biāo)解析

  (1)結(jié)合具體圖形,識三角形的概念及其基本元素.

  (2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類.

  (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.

  三、教學(xué)問題診斷分析

  在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.

  四、教學(xué)過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義.

  師生活動:先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.

  【設(shè)計意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.

  2.抽象概括,形成概念

  動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的'定義.

  師生活動:

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  【設(shè)計意圖】讓學(xué)生體會由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.

  補充說明:要求學(xué)生學(xué)會三角形、三角形的頂點、邊、角的概念以及幾何表達(dá)方法.

  師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會由文字語言向幾何語言的過渡.

  【設(shè)計意圖】進一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.

  3.概念辨析,應(yīng)用鞏固

  如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個內(nèi)角的三角形有哪些?

  3.以E為一個頂點的三角形有哪些?

  4.說出ΔBCD的三個角.

  師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.

  4.拓廣延伸,探究分類

  我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應(yīng)該如何分呢?小組之間同學(xué)進行交流并說說你們的想法.

  師生活動:通過討論,學(xué)生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強化學(xué)生對三角形按邊分類的理解.

八年級數(shù)學(xué)教案8

  學(xué)習(xí)目標(biāo)

  1、通過運算多項式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。

  2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。

  3、初步學(xué)會運用平方差公式進行計算。

  學(xué)習(xí)重難點重點:

  平方差公式的推導(dǎo)及應(yīng)用。

  難點是對公式中a,b的廣泛含義的'理解及正確運用。

  自學(xué)過程設(shè)計教學(xué)過程設(shè)計

  看一看

  認(rèn)真閱讀教材,記住以下知識:

  文字?jǐn)⑹銎椒讲罟剑篲________________

  用字母表示:________________

  做一做:

  1、完成下列練習(xí):

 、(m+n)(p+q)

 、(a+b)(x-y)

  ③(2x+3y)(a-b)

 、(a+2)(a-2)

 、(3-x)(3+x)

 、(2m+n)(2m-n)

  想一想

  你還有哪些地方不是很懂?請寫出來。

  _______________________________

  _______________________________

  ________________________________、

  1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、

  (1)(x-3)(x+3)=x2-3( ),__________;

  (2)(2x-3)(2x+3)=2x2-9( ),_________;

  (3)(-x-3)(x-3)=x2-9( ),_________;

  (4)(2xy-1)(2xy+1)=2xy2-1( ),________、

  2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

  (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

  3、計算:50×49=_________、

  應(yīng)用探究

  1、幾何解釋平方差公式

  展示:邊長a的大正方形中有一個邊長為b的小正方形。

  (1)請計算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計算)。

  (2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

  2、用平方差公式計算

  (1)103×93 (2)59、8×60、2

  拓展提高

  1、閱讀題:

  我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:

  原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

  =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

  =(24-1)(24+1)(28+1)(216+1)(232+1)

  =……=264-1

  你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

  2、仔細(xì)觀察,探索規(guī)律:

  (x-1)(x+1)=x2-1

  (x-1)(x2+x+1)=x3-1

  (x-1)(x3+x2+x+1)=x4-1

  (x-1)(x4+x3+x2+x+1)=x5-1

  ……

  (1)試求25+24+23+22+2+1的值;

  (2)寫出22006+22005+22004+…+2+1的個位數(shù)、

  堂堂清

  一、選擇題

  1、下列各式中,能用平方差公式計算的是( )

  (1)(a-2b)(-a+2b);

  (2)(a-2b)(-a-2b);

  (3)(a-2b)(a+2b);

  (4)(a-2b)(2a+b)、

八年級數(shù)學(xué)教案9

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識點

  1、等腰三角形的概念、

  2、等腰三角形的性質(zhì)、

  3、等腰三角形的概念及性質(zhì)的應(yīng)用、

  1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點、

  2、探索并掌握等腰三角形的性質(zhì)、

 。ㄈ┣楦信c價值觀要求

  通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣、

  教學(xué)重點

  1、等腰三角形的概念及性質(zhì)、

  2、等腰三角形性質(zhì)的應(yīng)用、

  教學(xué)難點

  等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、

  教學(xué)方法

  探究歸納法、

  教具準(zhǔn)備

  師:多媒體課件、投影儀;

  生:硬紙、剪刀、

  教學(xué)過程

  1、提出問題,創(chuàng)設(shè)情境

 。◣煟┰谇懊娴膶W(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案、這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形、來研究:

 、偃切问禽S對稱圖形嗎?

 、谑裁礃拥娜切问禽S對稱圖形?

 。ㄉ┯械娜切问禽S對稱圖形,有的三角形不是。

 。◣煟┠鞘裁礃拥娜切问禽S對稱圖形?

 。ㄉM足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。

 。◣煟┖芎茫覀冞@節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形。

  2、導(dǎo)入新課

 。◣煟┩瑢W(xué)們通過自己的思考來做一個等腰三角形。作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形。

  (生乙)在甲同學(xué)的做法中,A點可以取直線L上的任意一點。

 。◣煟⿲Γ催@種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學(xué)們拿出自己準(zhǔn)備的硬紙和剪刀,按自己設(shè)計的方法,也可以用課本P138探究中的方法,剪出一個等腰三角形。

 。◣煟┌凑瘴覀兊.做法,可以得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。

 。◣煟┯辛松鲜龈拍睿瑢W(xué)們來想一想。

  (演示課件)

  1、等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。

  2、等腰三角形的兩底角有什么關(guān)系?

  3、頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

  4、底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

 。ㄉ祝┑妊切问禽S對稱圖形、它的對稱軸是頂角的平分線所在的直線、因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。

  (師)同學(xué)們把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系。

  (生乙)我把自己做的等腰三角形折疊后,發(fā)現(xiàn)等腰三角形的兩個底角相等。

 。ㄉ┪野训妊切握郫B,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗證等腰三角形的對稱軸是頂角的平分線所在的直線。

 。ㄉ。┪野训妊切窝氐走吷系闹芯對折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的直線是等腰三角形的對稱軸。

 。ㄉ欤├蠋,我發(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對稱軸。

  (師)你們說的是同一條直線嗎?大家來動手折疊、觀察。

 。ㄉR聲)它們是同一條直線。

  (師)很好、現(xiàn)在同學(xué)們來歸納等腰三角形的性質(zhì)。。

  (生)我沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。

 。◣煟┖芎,大家看屏幕。

  (演示課件)

  等腰三角形的性質(zhì):

  1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)

  2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、

 。◣煟┯缮厦嬲郫B的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)、同學(xué)們現(xiàn)在就動手來寫出這些證明過程)

  (投影儀演示學(xué)生證明過程)

 。ㄉ祝┤缬覉D,在ABC中,AB=AC,作底邊BC的中線AD,因為

  所以BAD≌CAD(SSS)、

  所以∠B=∠C、

  (生乙)如右圖,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

  所以BAD≌CAD、

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

 。◣煟┖芎,甲、乙兩同學(xué)給出了等腰三角形兩個性質(zhì)的證明,過程也寫得很條理、很規(guī)范、下面我們來看大屏幕。

 。ㄑ菔菊n件)

  (例1)如圖,在ABC中,AB=AC,點D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、

 。◣煟┩瑢W(xué)們先思考一下,我們再來分析這個題、

 。ㄉ└鶕(jù)等邊對等角的性質(zhì),我們可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個內(nèi)角。

  (師)這位同學(xué)分析得很好,對我們以前學(xué)過的定理也很熟悉、如果我們在解的過程中把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷。

 。ㄕn件演示)

  (例)因為AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對等角)、

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、

  于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

  在ABC中,∠A=35°,∠ABC=∠C=72°、

  (師)下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識、

  3、隨堂練習(xí)

 。ㄒ唬┱n本P141練習(xí)1、2、3。

  練習(xí)

  1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、

  答案:(1)72°(2)30°

  2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標(biāo)出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段?

  答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

  3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、

  答:∠B=77°,∠C=38、5°、

 。ǘ╅喿x課本P138~P140,然后小結(jié)、

  4、課時小結(jié)

  這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用、等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、

  我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、

  5、課后作業(yè)

  (一)課本P147─1、3、4、8題、

  (二)1、預(yù)習(xí)課本P141~P143、

  2、預(yù)習(xí)提綱:等腰三角形的判定、

  6、活動與探究

  如右圖,在ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、

  求證:AE=CE、

  過程:通過分析、討論,讓學(xué)生進一步了解全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)、

  結(jié)果:

  證明:延長CD交AB的延長線于P,如右圖,在ADP和ADC中

  ADP≌ADC、

  ∠P=∠ACD、

  又DE∥AP,

  ∠4=∠P、

  ∠4=∠ACD、

  DE=EC、

  同理可證:AE=DE、

  AE=CE、

  板書設(shè)計

八年級數(shù)學(xué)教案10

  一.教學(xué)目標(biāo):

  1.了解方差的定義和計算公式。

  2.理解方差概念的產(chǎn)生和形成的過程。

  3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  二.重點、難點和難點的突破方法:

  1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

  2.難點:理解方差公式

  3.難點的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

  (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

  (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法?梢援嬚劬圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

  (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

  三.例習(xí)題的意圖分析:

  1.教材P125的討論問題的意圖:

  (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

  (2).為引入方差概念和方差計算公式作鋪墊。

  (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

  (4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

  2.教材P154例1的`設(shè)計意圖:

  (1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。

  (2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。

  四.課堂引入:

  除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。

  五.例題的分析:

  教材P154例1在分析過程中應(yīng)抓住以下幾點:

  1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

  2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。

  3.方差怎樣去體現(xiàn)波動大小?

  這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

  六.隨堂練習(xí):

  1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  問:(1)哪種農(nóng)作物的苗長的比較高?

  (2)哪種農(nóng)作物的苗長得比較整齊?

  2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?

  測試次數(shù)1 2 3 4 5

  段巍13 14 13 12 13

  金志強10 13 16 14 12

  參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

  2.段巍的成績比金志強的成績要穩(wěn)定。

  七.課后練習(xí):

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

  2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

  3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

  4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  選擇小兵參加比賽。

八年級數(shù)學(xué)教案11

  課題:一元二次方程實數(shù)根錯例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。

  【典型例題】

  例1 下列方程中兩實數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

  例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (2002山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。

  錯解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的.次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

 。1)求k的取值范圍;

 。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。

 。2)存在。

  如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

  ∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

  (1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

  解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

 。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。

  又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

  1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

  2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

  求證:關(guān)于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

  考題匯編

  1、(2000年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(2001年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

  (1)若方程的一個根為1,求m的值。

  (2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

  3、(2002年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(2003年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學(xué)教案12

  第11章平面直角坐標(biāo)系

  11。1平面上點的坐標(biāo)

  第1課時平面上點的坐標(biāo)(一)

  教學(xué)目標(biāo)

  【知識與技能】

  1。知道有序?qū)崝?shù)對的概念,認(rèn)識平面直角坐標(biāo)系的相關(guān)知識,如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點等。

  2。理解坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對的一一對應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點的坐標(biāo)。已知點的坐標(biāo),能在平面直角坐標(biāo)系中描出點。

  3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點的位置。

  【過程與方法】

  1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標(biāo)系的作用。

  2。學(xué)會用有序?qū)崝?shù)對和平面直角坐標(biāo)系中的點來描述物體的位置。

  【情感、態(tài)度與價值觀】

  通過引入有序?qū)崝?shù)對、平面直角坐標(biāo)系讓學(xué)生體會到現(xiàn)實生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價值。

  重點難點

  【重點】

  認(rèn)識平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點。

  【難點】

  理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

  教學(xué)過程

  一、創(chuàng)設(shè)情境、導(dǎo)入新知

  師:如果讓你描述自己在班級中的位置,你會怎么說?

  生甲:我在第3排第5個座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號,是對應(yīng)某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體

  的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

  生:3排5號。

  師:對,它們對應(yīng)的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應(yīng)該怎樣表示一個物體的位置呢?

  生:用一個有序的實數(shù)對來表示。

  師:對。我們學(xué)過實數(shù)與數(shù)軸上的點是一一對應(yīng)的,有序?qū)崝?shù)對是不是也可以和一個點對應(yīng)起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標(biāo)系,這個平面叫做坐標(biāo)平面。

  師:有了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了,F(xiàn)在請大家自己動手畫一個平面直角坐標(biāo)系。

  學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯誤。

  教師邊操作邊講解:

  如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點P的坐標(biāo)。在x軸上的點,過這點向y軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點,過這點向x軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點的橫坐標(biāo)和縱坐標(biāo)都是0,即原點的坐標(biāo)是(0,0)。

  教師多媒體出示:

  師:如圖,請同學(xué)們寫出A、B、C、D這四點的坐標(biāo)。

  生甲:A點的坐標(biāo)是(—5,4)。

  生乙:B點的坐標(biāo)是(—3,—2)。

  生丙:C點的坐標(biāo)是(4,0)。

  生。篋點的坐標(biāo)是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫出點的坐標(biāo),如果已知一點的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個點呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標(biāo)是3的點,過這一點向x軸作垂線,橫坐標(biāo)是3的點都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點,過這一點向y軸作垂線,縱坐標(biāo)是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點。下面請同學(xué)們在方格紙中建立一個平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

  學(xué)生動手作圖,教師巡視指導(dǎo)。

  三、深入探究,層層推進

  師:兩個坐標(biāo)軸把坐標(biāo)平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標(biāo)的符號一樣嗎?縱坐標(biāo)的符號一樣嗎?

  生:都一樣。

  師:對,由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點的橫坐標(biāo)的符號為+,縱坐標(biāo)的符號也為+。你能說出其他象限內(nèi)點的坐標(biāo)的符號嗎?

  生:能。第二象限內(nèi)的點的坐標(biāo)的符號為(—,+),第三象限內(nèi)的點的坐標(biāo)的符號為(—,—),第四象限內(nèi)的點的坐標(biāo)的符號為(+,—)。

  師:很好!我們知道了一點所在的象限,就能知道它的坐標(biāo)的符號。同樣的,我們由點的坐標(biāo)也能知道它所在的象限。一點的坐標(biāo)的符號為(—,+),你能判斷這點是在哪個象限嗎?

  生:能,在第二象限。

  四、練習(xí)新知

  師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。

  教師寫出四個點的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點在第三象限。

  生乙:B點在第四象限。

  生丙:C點不屬于任何一個象限,它在y軸上。

  生。篋點不屬于任何一個象限,它在x軸上。

  師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標(biāo)系,在上面描出這些點。

  學(xué)生作圖,教師巡視,并予以指導(dǎo)。

  五、課堂小結(jié)

  師:本節(jié)課你學(xué)到了哪些新的知識?

  生:認(rèn)識了平面直角坐標(biāo)系,會寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。

  教師補充完善。

  教學(xué)反思

  物體位置的說法和表述物體的位置等問題,學(xué)生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動中,主動學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的'實例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實用性,增強了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  第2課時平面上點的坐標(biāo)(二)

  教學(xué)目標(biāo)

  【知識與技能】

  進一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識坐標(biāo)系中的圖形。

  【過程與方法】

  通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價值觀】

  培養(yǎng)學(xué)生的合作交流意識和探索精神,體驗通過二維坐標(biāo)來描述圖形頂點,從而描述圖形的方法。

  重點難點

  【重點】

  理解平面上的點連接成的圖形,計算圍成的圖形的面積。

  【難點】

  不規(guī)則圖形面積的求法。

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個點。

  學(xué)生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計算出它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎樣算的呢?

  生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學(xué)生完成操作后回答:平行四邊形。

  師:你能計算它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎么計算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

  教師多媒體出示下圖:

八年級數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

  2、掌握整數(shù)指數(shù)冪的運算性質(zhì)、

  3、會用科學(xué)計數(shù)法表示小于1的數(shù)、

  教學(xué)重點:

  掌握整數(shù)指數(shù)冪的運算性質(zhì)。

  難點:

  會用科學(xué)計數(shù)法表示小于1的數(shù)。

  情感態(tài)度與價值觀:

  通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務(wù)于實踐。能利用事物之間的類比性解決問題、

  教學(xué)過程:

  一、課堂引入

  1、回憶正整數(shù)指數(shù)冪的運算性質(zhì):

 。1)同底數(shù)的冪的乘法:am?an = am+n(m,n是正整數(shù));

 。2)冪的乘方:(am)n = amn (m,n是正整數(shù));

 。3)積的乘方:(ab)n = anbn (n是正整數(shù));

 。4)同底數(shù)的冪的除法:am÷an = am?n(a≠0,m,n是正整數(shù),m>n);

  (5)商的`乘方:()n = (n是正整數(shù));

  2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時,a0 = 1、

  3、你還記得1納米=10?9米,即1納米=米嗎?

  4、計算當(dāng)a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、總結(jié):一般地,數(shù)學(xué)中規(guī)定:當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n(m,n是整數(shù))這條性質(zhì)也是成立的、

  三、科學(xué)記數(shù)法:

  我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0。000012 = 1。2×10?即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學(xué)生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0。0000000012 = 1。2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?1。

八年級數(shù)學(xué)教案14

  教學(xué)目標(biāo):

  情意目標(biāo):

  培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。

  能力目標(biāo):

  能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

  認(rèn)知目標(biāo):

  了解梯形的概念及其分類;掌握等腰梯形的'性質(zhì)。

  教學(xué)重點、難點

  重點:等腰梯形性質(zhì)的探索;

  難點:梯形中輔助線的添加。

  教學(xué)課件:

  PowerPoint演示文稿

  教學(xué)方法:

  啟發(fā)法、

  學(xué)習(xí)方法:

  討論法、合作法、練習(xí)法

  教學(xué)過程:

 。ㄒ唬⿲(dǎo)入

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

  4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

 。ǘ┑妊菪涡再|(zhì)的探究

  【探究性質(zhì)一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。

  【操練】

 。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

 。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E。(投影)

  【探究性質(zhì)二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質(zhì):等腰梯形的兩條對角線相等。

  【探究性質(zhì)三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等

 。ㄈ┵|(zhì)疑反思、小結(jié)

  讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

  學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級數(shù)學(xué)教案15

  一、學(xué)習(xí)目標(biāo)

  1.使學(xué)生了解運用公式法分解因式的意義;

  2.使學(xué)生掌握用平方差公式分解因式

  二、重點難點

  重點:掌握運用平方差公式分解因式。

  難點:將單項式化為平方形式,再用平方差公式分解因式。

  學(xué)習(xí)方法:歸納、概括、總結(jié)。

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問題情境,引入新課

  在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

  如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的`一種因式分解的方法——公式法。

  1.請看乘法公式

  左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

  利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式講解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精講精練

  例1、把下列各式分解因式:

 。1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

 。1)9(m+n)2—(m—n)2;(2)2x3—8x。

  補充例題:判斷下列分解因式是否正確。

 。1)(a+b)2—c2=a2+2ab+b2—c2。

 。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、課堂練習(xí)

  教科書練習(xí)。

  六、作業(yè)

  1、教科書習(xí)題。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

【八年級數(shù)學(xué)教案】相關(guān)文章:

有關(guān)八年級數(shù)學(xué)教案八年級數(shù)學(xué)教案全套10-03

八年級數(shù)學(xué)教案12-04

優(yōu)質(zhì)八年級數(shù)學(xué)教案11-02

八年級上冊數(shù)學(xué)教案01-13

八年級數(shù)學(xué)教案【熱門】01-18

【精】八年級數(shù)學(xué)教案01-21

八年級數(shù)學(xué)教案【推薦】01-20

八年級數(shù)學(xué)教案【熱】01-20

【熱】八年級數(shù)學(xué)教案01-18