久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

數(shù)學(xué)八年級(jí)上冊(cè)教案

時(shí)間:2023-03-02 17:33:37 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)八年級(jí)上冊(cè)教案集合15篇

  作為一名辛苦耕耘的教育工作者,通常會(huì)被要求編寫(xiě)教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。教案應(yīng)該怎么寫(xiě)呢?下面是小編收集整理的數(shù)學(xué)八年級(jí)上冊(cè)教案,僅供參考,希望能夠幫助到大家。

數(shù)學(xué)八年級(jí)上冊(cè)教案集合15篇

數(shù)學(xué)八年級(jí)上冊(cè)教案1

  第11章平面直角坐標(biāo)系

  11。1平面上點(diǎn)的坐標(biāo)

  第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)

  教學(xué)目標(biāo)

  【知識(shí)與技能】

  1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。

  2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫(xiě)出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。

  3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來(lái)描述點(diǎn)的位置。

  【過(guò)程與方法】

  1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。

  2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來(lái)描述物體的位置。

  【情感、態(tài)度與價(jià)值觀】

  通過(guò)引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問(wèn)題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  認(rèn)識(shí)平面直角坐標(biāo)系,寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。

  【難點(diǎn)】

  理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情境、導(dǎo)入新知

  師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說(shuō)?

  生甲:我在第3排第5個(gè)座位。

  生乙:我在第4行第7列。

  師:很好!我們買(mǎi)的電影票上寫(xiě)著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來(lái)。

  二、合作探究,獲取新知

  師:在以上幾個(gè)問(wèn)題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來(lái)表示這個(gè)物體

  的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來(lái)表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?

  生:3排5號(hào)。

  師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰(shuí)來(lái)說(shuō)說(shuō)我們應(yīng)該怎樣表示一個(gè)物體的位置呢?

  生:用一個(gè)有序的實(shí)數(shù)對(duì)來(lái)表示。

  師:對(duì)。我們學(xué)過(guò)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來(lái)呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。

  師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來(lái)表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫(huà)一個(gè)平面直角坐標(biāo)系。

  學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。

  教師邊操作邊講解:

  如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說(shuō)P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫(xiě)在前,縱坐標(biāo)寫(xiě)在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過(guò)這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過(guò)這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。

  教師多媒體出示:

  師:如圖,請(qǐng)同學(xué)們寫(xiě)出A、B、C、D這四點(diǎn)的坐標(biāo)。

  生甲:A點(diǎn)的坐標(biāo)是(—5,4)。

  生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。

  生丙:C點(diǎn)的坐標(biāo)是(4,0)。

  生丁:D點(diǎn)的坐標(biāo)是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫(xiě)出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標(biāo)是3的點(diǎn),過(guò)這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過(guò)這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的.點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。

  學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。

  三、深入探究,層層推進(jìn)

  師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開(kāi)始,按逆時(shí)針?lè)较颍堰@四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?

  生:都一樣。

  師:對(duì),由作垂線求坐標(biāo)的過(guò)程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說(shuō)出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?

  生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。

  師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?

  生:能,在第二象限。

  四、練習(xí)新知

  師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。

  教師寫(xiě)出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點(diǎn)在第三象限。

  生乙:B點(diǎn)在第四象限。

  生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。

  生丁:D點(diǎn)不屬于任何一個(gè)象限,它在x軸上。

  師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。

  學(xué)生作圖,教師巡視,并予以指導(dǎo)。

  五、課堂小結(jié)

  師:本節(jié)課你學(xué)到了哪些新的知識(shí)?

  生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。

  教師補(bǔ)充完善。

  教學(xué)反思

  物體位置的說(shuō)法和表述物體的位置等問(wèn)題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒(méi)有想到這些問(wèn)題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來(lái)表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)

  教學(xué)目標(biāo)

  【知識(shí)與技能】

  進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。

  【過(guò)程與方法】

  通過(guò)探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價(jià)值觀】

  培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過(guò)二維坐標(biāo)來(lái)描述圖形頂點(diǎn),從而描述圖形的方法。

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。

  【難點(diǎn)】

  不規(guī)則圖形面積的求法。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來(lái)。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。

  學(xué)生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來(lái),看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計(jì)算出它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎樣算的呢?

  生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來(lái)看看形成的是什么

  圖形?

  學(xué)生完成操作后回答:平行四邊形。

  師:你能計(jì)算它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎么計(jì)算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來(lái)看這樣一個(gè)連接成的圖形:

  教師多媒體出示下圖:

數(shù)學(xué)八年級(jí)上冊(cè)教案2

  單元(章)主題第三章 直棱柱任課教師與班級(jí)

  本課(節(jié))課題3.1 認(rèn)識(shí)直棱柱第 1 課時(shí) / 共 課時(shí)

  教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及

  設(shè)置依據(jù)教學(xué)目標(biāo)

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.

  教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):直棱柱的有關(guān)概念.

  教學(xué)難點(diǎn):本節(jié)的例題描述一個(gè)物體的形狀,把它看成怎樣的兩個(gè)幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.

  教學(xué)準(zhǔn)備每個(gè)學(xué)生準(zhǔn)備一個(gè)幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長(zhǎng)方體、立方體模型

  教 學(xué) 過(guò) 程

  內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒(méi)有這樣類似的立體圖形呢?

  析:學(xué)生很容易回答出更多的答案。

  師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國(guó)的迪思尼樂(lè)園、德國(guó)的古堡風(fēng)光,中國(guó)北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點(diǎn)概念:

  師:(出示長(zhǎng)方體,立方體模型)這是我們熟悉的'立體圖形,它們是有幾個(gè)平面圍成的?都有什么相同特點(diǎn)?

  析:一個(gè)同學(xué)回答,然后小結(jié)概念:由若干個(gè)平面圍成的幾何體,叫做多面體。多面體上相鄰兩個(gè)面之間的交線叫做多面體的棱,幾個(gè)面的公共頂點(diǎn)叫做多面體的頂點(diǎn)

  2.合作交流

  師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

  學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語(yǔ)言描

  述其特征。)

  師:同學(xué)們?cè)儆懻撘幌,能否把自己的語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言。

  學(xué)生活動(dòng):分小組討論。

  說(shuō)明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

  師:請(qǐng)大家找出與長(zhǎng)方體,立方體類似的物體或模型。

  析:舉出實(shí)例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長(zhǎng)方形含正方形。

  長(zhǎng)方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學(xué)以至用

  出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)

  析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的創(chuàng)造性思維習(xí)慣)

  最后完成例題中的“想一想”

  5.鞏固練習(xí)(學(xué)生練習(xí))

  完成“課內(nèi)練習(xí)”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?

  合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長(zhǎng)方形含正方形。

  例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。

  板書(shū)設(shè)計(jì)

  作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)

數(shù)學(xué)八年級(jí)上冊(cè)教案3

  一、教材分析教材的地位和作用:

  本節(jié)內(nèi)容是第一課時(shí)《軸對(duì)稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動(dòng)經(jīng)歷,從觀察生活中的軸對(duì)稱現(xiàn)象開(kāi)始,從整體的角度認(rèn)識(shí)軸對(duì)稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),使學(xué)生從對(duì)圖形的感性認(rèn)識(shí)上升到對(duì)軸對(duì)稱的理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)軸對(duì)稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識(shí)奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

  二、學(xué)情分析

  八年級(jí)學(xué)生有一定的知識(shí)水平,已經(jīng)初步形成了一定觀察能力、語(yǔ)言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過(guò)觀察生活中的實(shí)例和動(dòng)手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對(duì)稱圖形和軸對(duì)稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。

  三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定

  根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:

  (一)教學(xué)目標(biāo):

  1、知識(shí)技能

  (1)理解并掌握軸對(duì)稱圖形的概念,對(duì)稱軸;能準(zhǔn)確判斷哪些事物是軸對(duì)稱圖形;找出軸對(duì)稱圖形的對(duì)稱軸.

  (2)理解并掌握軸對(duì)稱的概念,對(duì)稱軸;了解對(duì)稱點(diǎn).

  (3)了解軸對(duì)稱圖形和軸對(duì)稱的聯(lián)系與區(qū)別.

  2、過(guò)程與方法目標(biāo)

  經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過(guò)程,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力、抽象思維和語(yǔ)言表達(dá)能力.

  3、情感、態(tài)度與價(jià)值觀

  通過(guò)對(duì)生活中數(shù)學(xué)問(wèn)題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過(guò)程中,體會(huì)數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛(ài)生活的情感和欣賞圖形的對(duì)稱美。

  (二)教學(xué)重點(diǎn):軸對(duì)稱圖形和軸對(duì)稱的有關(guān)概念.

  (三)教學(xué)難點(diǎn):軸對(duì)稱圖形與軸對(duì)稱的聯(lián)系、區(qū)別

  .四、教法和學(xué)法設(shè)計(jì)

  本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征。我選擇的:

  【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過(guò)豐富的圖片展示,創(chuàng)設(shè)出問(wèn)題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動(dòng),激發(fā)學(xué)生探求知識(shí)的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),使不同層次學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

  【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

  【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率

  五、說(shuō)程序設(shè)計(jì):

  新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了設(shè)計(jì)。

  (一)、觀圖激趣、設(shè)疑導(dǎo)入。

  出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來(lái)到花叢中游玩,這時(shí)蝴蝶對(duì)蜜蜂說(shuō):“咱們長(zhǎng)得真象”,蜜蜂百思不得其解。你能說(shuō)出為什么長(zhǎng)得象嗎?今天我們就來(lái)共同探討這一問(wèn)題――軸對(duì)稱。

  [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂(lè)見(jiàn)的故事情景,激發(fā)了學(xué)生濃厚的`學(xué)習(xí)興趣,

  (二)、實(shí)踐探索、感悟特征.

  《活動(dòng)一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見(jiàn)的具有代表性的典型的軸對(duì)稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無(wú)論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問(wèn)題:這些圖形有什么共同特征?是如何對(duì)稱?怎樣才能使對(duì)稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對(duì)稱圖形和對(duì)稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對(duì)軸對(duì)稱圖形概念的理解。

  為了進(jìn)一步認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn)又出示了一組練習(xí)

  (練習(xí)1)這是一組常見(jiàn)幾何圖形,要求學(xué)生判斷是否是對(duì)稱圖形,若是對(duì)稱圖形的,畫(huà)出它的對(duì)稱軸

  [設(shè)計(jì)意圖]通過(guò)這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對(duì)稱圖形的概念,而且讓學(xué)生認(rèn)識(shí)到我們常見(jiàn)的圖形,有些是軸對(duì)稱圖形,有些不是軸對(duì)稱圖形。并且還讓學(xué)生認(rèn)識(shí)軸對(duì)稱圖形的對(duì)稱軸不僅僅只一條,有可能有2條、3條、4條甚至無(wú)數(shù)條,對(duì)稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

  (練習(xí)2)國(guó)家的一個(gè)象征,觀察下面的國(guó)旗,哪些是軸對(duì)稱圖形?試找出它們的對(duì)稱軸。次題進(jìn)一步鞏固了軸對(duì)稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過(guò)展示各國(guó)的國(guó)旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識(shí)面。

  (三)、動(dòng)手操作、再度探索新知。

  將一張紙對(duì)折,用筆尖扎出一個(gè)圖案,然后將紙展開(kāi)后,鋪平,觀察各自得到的圖案與軸對(duì)稱圖形的不同。教學(xué)中注重學(xué)生活動(dòng),鼓勵(lì)學(xué)生親自實(shí)踐,積極思考,在樂(lè)學(xué)的氛圍中,培養(yǎng)學(xué)生的動(dòng)手能力,從而引出軸對(duì)稱概念。

  再次引導(dǎo)學(xué)生討論、歸納得出軸對(duì)稱的概念……。之后再結(jié)合動(dòng)畫(huà)演示加深對(duì)軸對(duì)稱概念的理解,進(jìn)而引出對(duì)稱軸、對(duì)稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識(shí)。

  (四)、鞏固練習(xí)、升華新知。

  出示幾幅圖形,請(qǐng)同學(xué)們辨別哪幅圖形是軸對(duì)稱圖形哪些圖形軸對(duì)稱,

  在這組練習(xí)中讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,充分調(diào)動(dòng)了學(xué)生的各種感官參與學(xué)習(xí),既加深了對(duì)兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對(duì)稱圖形及軸對(duì)稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

  (課件演示)軸對(duì)稱圖形及兩個(gè)圖形成軸對(duì)稱區(qū)別與聯(lián)系

  (五)、綜合練習(xí)、發(fā)展思維。

  1、搶答;觀察周?chē)男┦挛锏男螤钍禽S對(duì)稱圖形。

  2、判斷:

  生活中不僅有些物體的形狀是軸對(duì)稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對(duì)稱圖形。

  (1)下面的數(shù)字或字母,哪些是軸對(duì)稱圖形?它們各有幾條對(duì)稱軸?

  0123456789ABCDEFGH

  3、像這樣寫(xiě)法的漢字哪些是軸對(duì)稱圖形?

  口工用中由日直水清甲

  (這幾道題的練習(xí)做到了知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

  (六)歸納小結(jié)、布置作業(yè)

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

  六、設(shè)計(jì)說(shuō)明

  這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過(guò)六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過(guò)觀察生活中的一些圖案以及動(dòng)畫(huà)演示,由感性到理性,讓學(xué)生輕松掌握了軸對(duì)稱圖形與關(guān)于直線成軸對(duì)稱兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過(guò)程中讓學(xué)生動(dòng)口、動(dòng)手、動(dòng)眼、動(dòng)腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對(duì)本節(jié)課的理解和說(shuō)明。

數(shù)學(xué)八年級(jí)上冊(cè)教案4

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):了解圖案最常見(jiàn)的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。

  2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過(guò)程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問(wèn)題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

  難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

  疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

  教具學(xué)具準(zhǔn)備:

  提前一周布置學(xué)生以小組為單位,通過(guò)各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見(jiàn)的圖案及其形成過(guò)程的動(dòng)畫(huà)演示。

  教學(xué)過(guò)程設(shè)計(jì):

  1、情境導(dǎo)入:在優(yōu)美的音樂(lè)中,逐個(gè)展示生活中常見(jiàn)的典型圖案,并讓學(xué)生試著說(shuō)一說(shuō)每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的`設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過(guò)觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過(guò)旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過(guò)軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過(guò)平移形成。

  2、課本

  1 欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過(guò)程。

  評(píng)注:圖案是密鋪圖案的代表,旨在通過(guò)對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說(shuō)明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

  評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過(guò)變換得到。而且變化方式也可以是:左下角的圖案通過(guò)軸對(duì)稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習(xí)

  (1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說(shuō)明自己的設(shè)計(jì)意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。

  (四)課時(shí)小結(jié)

  本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。

  通過(guò)今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來(lái)設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過(guò)目不忘,達(dá)到標(biāo)志的效果。)

  八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展

  進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。

數(shù)學(xué)八年級(jí)上冊(cè)教案5

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.

  2.內(nèi)容解析

  三角形是一種最基本的幾何圖形,是認(rèn)識(shí)其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對(duì)三角形的有關(guān)知識(shí)有更為深刻的理解.

  本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系.

  本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語(yǔ)言表示三角形中的.對(duì)應(yīng)元素.

  (2)理解并且靈活應(yīng)用三角形三邊關(guān)系.

  2.教學(xué)目標(biāo)解析

  (1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素.

  (2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類.

  (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來(lái)解決問(wèn)題.

  三、教學(xué)問(wèn)題診斷分析

  在探索三角形三邊關(guān)系的過(guò)程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動(dòng)過(guò)程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.

  四、教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  問(wèn)題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義.

  師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對(duì)學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對(duì)三角形概念的理解.

  【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過(guò)程,借此培養(yǎng)學(xué)生的語(yǔ)言表述能力,加深學(xué)生對(duì)三角形概念的理解.

  2.抽象概括,形成概念

  動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫(huà),歸納出三角形的定義.

  師生活動(dòng):

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過(guò)程,培養(yǎng)學(xué)生的語(yǔ)言表述能力.

  補(bǔ)充說(shuō)明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.

  師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語(yǔ)言向幾何語(yǔ)言的過(guò)渡.

  【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語(yǔ)言在學(xué)習(xí)中的應(yīng)用.

  3.概念辨析,應(yīng)用鞏固

  如圖,不重復(fù),且不遺漏地識(shí)別所有三角形,并用符號(hào)語(yǔ)言表示出來(lái).

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個(gè)內(nèi)角的三角形有哪些?

  3.以E為一個(gè)頂點(diǎn)的三角形有哪些?

  4.說(shuō)出ΔBCD的三個(gè)角.

  師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對(duì)三角形中相關(guān)元素概念的理解.

  4.拓廣延伸,探究分類

  我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對(duì)三角形進(jìn)行分類,又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說(shuō)說(shuō)你們的想法.

  師生活動(dòng):通過(guò)討論,學(xué)生類比按角的分類方法按邊對(duì)三角形進(jìn)行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對(duì)三角形按邊分類的理解.

數(shù)學(xué)八年級(jí)上冊(cè)教案6

  一、知識(shí)點(diǎn):

  1.坐標(biāo)(x,y)與點(diǎn)的對(duì)應(yīng)關(guān)系

  有序數(shù)對(duì):有順序的兩個(gè)數(shù)x與y組成的數(shù)對(duì),記作(x,y);

  注意:x、y的先后順序?qū)ξ恢玫挠绊憽?/p>

  2.平面直角坐標(biāo)系:

  (1)、構(gòu)成坐標(biāo)系的各種名稱:四個(gè)象限和兩條坐標(biāo)軸

  (2)、各種特殊點(diǎn)的坐標(biāo)特點(diǎn):坐標(biāo)軸上的點(diǎn)至少有一個(gè)坐標(biāo)

  為0;X軸上的點(diǎn)的縱坐標(biāo)為0,y軸上點(diǎn)的橫坐標(biāo)為0,原點(diǎn)

  的坐標(biāo)為(0,0)。

  3.坐標(biāo)(x,y)的幾何意義

  平面直角坐標(biāo)系是代數(shù)與幾何聯(lián)系的紐帶,坐標(biāo)(x,y)有某

  幾何意義,如點(diǎn)A(-3,2)它到x軸、y軸、原點(diǎn)的距離分別是︱x︱

  =︱2︱=2,︱y︱=︱-3︱=3,OA = 。

  4.注意各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)

  點(diǎn)P(x,y)在第一象限內(nèi),則x0,y0,反之亦然.

  點(diǎn)P(x,y)在第二象限內(nèi),則x0,y0,反之亦然.

  點(diǎn)P(x,y)在第三象限內(nèi),則x0,y0,反之亦然.

  點(diǎn)P(x,y)在第四象限內(nèi),則x0,y0,反之亦然.

  5.平行于坐標(biāo)軸的直線的點(diǎn)的坐標(biāo)特點(diǎn):

  平行于x軸(或橫軸)的直線上的點(diǎn)的這 縱 坐標(biāo)相同;

  平行于y軸(或縱軸)的直線上的點(diǎn)的 橫 坐標(biāo)相同。

  6.各象限的角平分線上的點(diǎn)的坐標(biāo)特點(diǎn):

  第一、三象限角平分線上的點(diǎn)的橫縱坐標(biāo) 相同 ;

  第二、四象限角平分線上的點(diǎn)的橫縱坐標(biāo) 互為相反數(shù) 。

  7.與坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):

  關(guān)于x軸對(duì)稱的點(diǎn)的橫坐標(biāo) 相同 ,縱坐標(biāo) 互為相反數(shù)

  關(guān)于y軸對(duì)稱的點(diǎn)的縱坐標(biāo) 相同 ,橫坐標(biāo) 互為相反數(shù)

  關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都 互為相反數(shù)

  8.特殊位置點(diǎn)的特殊坐標(biāo):

  坐標(biāo)軸上點(diǎn)P(x,y) 連線平行于坐標(biāo)軸的點(diǎn) 點(diǎn)P(x,y)在各象限的坐標(biāo)特點(diǎn)

  X軸 Y軸 原點(diǎn) 平行X軸 平行Y軸 第一象限 第二象限 第三象限 第四象限

  (x,0) (0,y) (0,0) 縱坐標(biāo) 相同

  橫坐標(biāo) 不同 橫坐標(biāo) 相同

  縱坐標(biāo) 不同

  9.利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些點(diǎn)分布情況平面圖過(guò)程如下:

  (1)建立坐標(biāo)系,選擇一個(gè)適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;

  (2)根據(jù)具體問(wèn)題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長(zhǎng)度;

  (3)在坐標(biāo)平面內(nèi)畫(huà)出這些點(diǎn),寫(xiě)出各點(diǎn)的坐標(biāo)和各個(gè)地點(diǎn)的名稱。

  10.用坐標(biāo)表示平移:見(jiàn)下圖

  二、典型訓(xùn)練:

  1.位置的確定

  1、如圖,圍棋盤(pán)的左下角呈現(xiàn)的是一局圍棋比賽中的幾手棋.為記錄棋譜方便,橫線用數(shù)字表示.縱線用英文字母表示,這樣,黑棋①的位置可記為(C,4),白棋②的位置可記為(E,3),則白棋⑨的位置應(yīng)記為 _____.

  2、如圖所示的象棋盤(pán)上,若帥位于點(diǎn)(1,﹣3)上,相位于點(diǎn)(3,﹣3)上,則炮位于點(diǎn)( )

  A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)

  2.平面直角坐標(biāo)系內(nèi)的點(diǎn)的特點(diǎn): 一)確定字母取值范圍:

  1、點(diǎn)A(m+3,m+1)在x軸上,則A點(diǎn)的坐標(biāo)為( )

  A (0,-2) B、(2,0) C、(4,0) D、(0,-4)

  2、若點(diǎn)M(1, )在第四象限內(nèi),則 的取值范圍是 .

  3、已知點(diǎn)P(x,y+1)在第二象限,則點(diǎn)Q(﹣x+2,2y+3)在第 象限.

  二)確定點(diǎn)的坐標(biāo):

  1、點(diǎn) 在第二象限內(nèi), 到 軸的距離是4,到 軸的距離是3,那么點(diǎn) 的坐標(biāo)為( )

  A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)

  2、若點(diǎn)P在x軸的下方,y軸的左方,到每條坐標(biāo)軸的距離都是3,則點(diǎn)P的坐標(biāo)為( )

  A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)

  3、在x軸上與點(diǎn)(0,﹣2)距離是4個(gè)單位長(zhǎng)度的點(diǎn)有 .

  4、若點(diǎn)(5﹣a,a﹣3)在第一、三象限角平分線上,則a= .

  三)確定對(duì)稱點(diǎn)的坐標(biāo):

  1、P(﹣1,2)關(guān)于x軸對(duì)稱的點(diǎn)是 ,關(guān)于y軸對(duì)稱的點(diǎn)是 ,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)是 .

  2、已知點(diǎn) 關(guān)于 軸的對(duì)稱點(diǎn)為 ,則 的值是( )

  A. B. C. D.

  3、在平面直角坐標(biāo)系中,將點(diǎn)A(1,2)的橫坐標(biāo)乘以﹣1,縱坐標(biāo)不變,

  得到點(diǎn)A,則點(diǎn)A和點(diǎn)A的關(guān)系是( )

  A、關(guān)于x軸對(duì)稱 B、將點(diǎn)A向x軸負(fù)方向平移一個(gè)單位得點(diǎn)A

  C、關(guān)于原點(diǎn)對(duì)稱 D、關(guān)于y軸對(duì)稱

  3.與平移有關(guān)的問(wèn)題

  1、通過(guò)平移把點(diǎn)A(2,﹣3)移到點(diǎn)A(4,﹣2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是 .

  2、如圖,點(diǎn)A坐標(biāo)為(-1,1),將此小船ABCD向左平移2個(gè)單位,再向上平移3個(gè)單位得ABCD.

  (1)畫(huà)出平面直角坐標(biāo)系;

  (2)畫(huà)出平移后的小船ABCD,

  寫(xiě)出A,B,C,D各點(diǎn)的坐標(biāo).

  3、在平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是( )

  A.(3,7) B.(5,3) C.(7,3) D.(8,2)

  4.建立直角坐標(biāo)系

  1、如圖1是某市市區(qū)四個(gè)旅游景點(diǎn)示意圖(圖中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度),請(qǐng)以某景點(diǎn)為原點(diǎn),建立平面直角坐標(biāo)系,用坐標(biāo)表示下列景點(diǎn)的位置.①動(dòng)物園 ,②烈士陵園 .

  2、如圖,機(jī)器人從A點(diǎn),沿著西南方向,行了4 個(gè)單位到達(dá)B點(diǎn)后,觀察到原點(diǎn)O在它的南偏東60的方向上,則原來(lái)A的坐標(biāo)為 (結(jié)果保留根號(hào)).

  3、如圖,△AOB是邊長(zhǎng)為5的等邊三角形,則A,B兩點(diǎn)的坐標(biāo)分別是A ,B .

  5.創(chuàng)新題: 一)規(guī)律探索型:

  1、如圖2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.則點(diǎn)A2015的坐標(biāo)為_(kāi)_______.

  二)閱讀理解型:

  1、在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長(zhǎng)度為1cm,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1cm/s,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖1所示.運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的關(guān)系如下表:

  整點(diǎn)P從原點(diǎn)出發(fā)的時(shí)間(s) 可以得到整點(diǎn)P的坐標(biāo) 可以得到整點(diǎn)P的個(gè)數(shù)

  1 (0,1)(1,0) 2

  2 (0,2)(1,1),(2,0) 3

  3 (0,3)(1,2)(2,1)(3,0) 4

  根據(jù)上表中的規(guī)律,回答下列問(wèn)題:

  (1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4s時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為_(kāi)_______個(gè).

  (2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).

  (3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)____s時(shí),可以得到整點(diǎn)(16,4)的位置.

  三、易錯(cuò)題:

  1、 已知點(diǎn)P(4,a)到橫軸的距離是3,則點(diǎn)P的坐標(biāo)是_____.

  2、 已知點(diǎn)P(m,n)到x軸的距離為3,到y(tǒng)軸的距離等于5,則點(diǎn)P的坐標(biāo)是_____.

  3、 已知點(diǎn)P(m,2m-1)在x軸上,則P點(diǎn)的坐標(biāo)是_______.

  4、如圖,四邊形ABCD各個(gè)頂點(diǎn)的坐標(biāo)分別為 (2,8),(11,6),(14,0),(0,0)。

  (1)確定這個(gè)四邊形的.面積;

  (2)如果把原來(lái)ABCD各個(gè)頂點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?

  四、提高題:

  1、在平面直角坐標(biāo)系中,點(diǎn)(-2,4)所在的象限是( )

  A、第一象限 B、第二象限 C、第三象限 D、第四象限

  2、若a0,則點(diǎn)P(-a,2)應(yīng)在 ( )

  A.第象限內(nèi) B.第二象限內(nèi) C.第三象限內(nèi) D.第四象限內(nèi)

  3、已知 ,則點(diǎn) 在第______象限.

  4、若 +(b+2)2=0,則點(diǎn)M(a,b)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為_(kāi)_____.

  5、點(diǎn)P(1,2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)是 . 已知點(diǎn)A和點(diǎn)B(a,-b)關(guān)于y軸對(duì)稱,求點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)C的坐標(biāo)___________.

  6、已知點(diǎn) A(3a-1,2-b),B(2a-4,2b+5).

  若A與B關(guān)于x軸對(duì)稱,則a=________,b=_______;若A與B關(guān)于y軸對(duì)稱,則a=________,b=_______;

  若A與B關(guān)于原點(diǎn)對(duì)稱,則a=________,b=_______.

  7、學(xué)生甲錯(cuò)將P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的次序顛倒,寫(xiě)成(m,n),學(xué)生乙錯(cuò)將Q點(diǎn)的坐標(biāo)寫(xiě)成它關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo),寫(xiě)成(-n,-m),則P點(diǎn)和Q點(diǎn)的位置關(guān)系是_________.

  8、點(diǎn)P(x,y)在第四象限內(nèi),且|x|=2,|y| =5,P點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是_______.

  9、以點(diǎn)(4,0)為圓心,以5為半徑的圓與y軸交點(diǎn)的坐標(biāo)為_(kāi)_____.

  10、點(diǎn)P( , )到x軸的距離為_(kāi)_______,到y(tǒng)軸的距離為_(kāi)________。

  11、點(diǎn)P(m,-n)與兩坐標(biāo)軸的距離___________________________________________________。

  12、已知點(diǎn)P到x軸和y軸的距離分別為3和4,則P點(diǎn)坐標(biāo)為_(kāi)_________________________.

  13、點(diǎn)P在第二象限,若該點(diǎn)到x軸的距離為,到y(tǒng)軸的距離為1,則點(diǎn)P的坐標(biāo)是( )

  A.( 1, ) B.( ,1) C.( , ) D.(1, )

  14、點(diǎn)A(4,y)和點(diǎn)B(x, ),過(guò)A,B兩點(diǎn)的直線平行x軸,且 ,則 ______, ______.

  15、已知等邊三角形ABC的邊長(zhǎng)是4,以AB邊所在的直線為x軸,AB邊的中點(diǎn)為原點(diǎn),建立直角坐標(biāo)系,則頂點(diǎn)C的坐標(biāo)為_(kāi)_______________.

  16、通過(guò)平移把點(diǎn)A(2,-3)移到點(diǎn)A(4,-2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是_____________.

  17、如圖11,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90后得到△ABC,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是( )

  A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)

  18、平面直角坐標(biāo)系 內(nèi)有一點(diǎn)A(a,b),若ab=0,則點(diǎn)A的位置在( ).

  A.原點(diǎn) B. x軸上 C.y 軸上 D.坐標(biāo)軸上

  19、已知等邊△ABC的兩個(gè)頂點(diǎn)坐標(biāo)為A(-4,0)、B(2,0),則點(diǎn)C的坐標(biāo)為_(kāi)_____,△ABC的面積為_(kāi)_____.

  20、(1)將下圖中的各個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?

  (2)將下圖中的各個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?

  (3)將下圖中的各個(gè)點(diǎn)的橫坐標(biāo)都乘以-2,縱坐標(biāo)都乘以-2,與原圖案相比,所得圖案有什么變化?

數(shù)學(xué)八年級(jí)上冊(cè)教案7

  教學(xué)目標(biāo)

  1.認(rèn)識(shí)變量、常量.

  2.學(xué)會(huì)用含一個(gè)變量的代數(shù)式表示另一個(gè)變量.

  教學(xué)重點(diǎn)

 。保J(rèn)識(shí)變量、常量.

  2.用式子表示變量間關(guān)系.

  教學(xué)難點(diǎn)

  用含有一個(gè)變量的式子表示另一個(gè)變量.

  教學(xué)過(guò)程

  Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

  情景問(wèn)題:一輛汽車(chē)以60千米/小時(shí)的速度勻速行駛,行駛里程為s千米.行駛時(shí)間為t小時(shí).

 。保(qǐng)同學(xué)們根據(jù)題意填寫(xiě)下表:

  t/時(shí) 1 2 3 4 5

  s/千米

  2.在以上這個(gè)過(guò)程中,變化的量是________.變變化的量是__________.

  3.試用含t的式子表示s.

  Ⅱ.導(dǎo)入新課

  首先讓學(xué)生思考上面的幾個(gè)問(wèn)題,可以互相討論一下,然后回答.

  從題意中可以知道汽車(chē)是勻速行駛,那么它1小時(shí)行駛60千米,2小時(shí)行駛2×60千米,即120千米,3小時(shí)行駛3×60千米,即180千米,4小時(shí)行駛4×60千米,即240千米,5小時(shí)行駛5×60千米,即300千米……因此行駛里程s千米與時(shí)間t小時(shí)之間有關(guān)系:s=60t.其中里程s與時(shí)間t是變化的量,速度60千米/小時(shí)是不變的量.

  這種問(wèn)題反映了勻速行駛的汽車(chē)所行駛的里程隨行駛時(shí)間的變化過(guò)程.其實(shí)現(xiàn)實(shí)生活中有好多類似的問(wèn)題,都是反映不同事物的變化過(guò)程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時(shí)間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時(shí).

  [活動(dòng)一]

  1.每張電影票售價(jià)為10元,如果早場(chǎng)售出票150張,日?qǐng)鍪鄢?05張,晚場(chǎng)售出310張.三場(chǎng)電影的票房收入各多少元.設(shè)一場(chǎng)電影售票x張,票房收入y元.怎樣用含x的式子表示y?

  2.在一根彈簧的下端懸掛重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長(zhǎng)度的變化,探索它們的變化規(guī)律.如果彈簧原長(zhǎng)10cm,每1kg重物使彈簧伸長(zhǎng)0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長(zhǎng)度?

  引導(dǎo)學(xué)生通過(guò)合理、正確的思維方法探索出變化規(guī)律.

  結(jié)論:

 。保鐖(chǎng)電影票房收入:150×10=1500(元)

  日?qǐng)鲭娪捌狈渴杖耄?05×10=20xx(元)

  晚場(chǎng)電影票房收入:310×10=3100(元)

  關(guān)系式:y=10x

 。玻畳1kg重物時(shí)彈簧長(zhǎng)度: 1×0.5+10=10.5(cm)

  掛2kg重物時(shí)彈簧長(zhǎng)度:2×0.5+10=11(cm)

  掛3kg重物時(shí)彈簧長(zhǎng)度:3×0.5+10=11.5(cm)

  關(guān)系式:L=0.5m+10

  通過(guò)上述活動(dòng),我們清楚地認(rèn)識(shí)到,要想尋求事物變化過(guò)程的規(guī)律,首先需確定在這個(gè)過(guò)程中哪些量是變化的,而哪些量又是不變的.在一個(gè)變化過(guò)程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個(gè)過(guò)程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長(zhǎng)度L都是變量.而票價(jià)10元,彈簧原長(zhǎng)10cm……都是常量.

  [活動(dòng)二]

 。保(huà)一個(gè)面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?

  2.用10m長(zhǎng)的繩子圍成矩形,試改變矩形長(zhǎng)度.觀察矩形的面積怎樣變化.記錄不同的矩形的長(zhǎng)度值,計(jì)算相應(yīng)的矩形面積的.值,探索它們的變化規(guī)律:設(shè)矩形的長(zhǎng)度為xcm,面積為Scm2.怎樣用含有x的式子表示S?

  結(jié)論:

 。保笠阎娣e的圓的半徑,可利用圓的面積公式經(jīng)過(guò)變形求出S= r2r=

  面積為10cm2的圓半徑r= ≈1.78(cm)

  面積為20cm2的圓半徑r= ≈2.52(cm)

  關(guān)系式:r=

 。玻蚓匦蝺山M對(duì)邊相等,所以它一條長(zhǎng)與一條寬的和應(yīng)是周長(zhǎng)10cm的一半,即5cm.

  若長(zhǎng)為1cm,則寬為5-1=4(cm)

  據(jù)矩形面積公式:S=1×4=4(cm2)

  若長(zhǎng)為2cm,則寬為5-2=3(cm)

  面積S=2×(5-2)=6(cm2)

  … …

  若長(zhǎng)為xcm,則寬為5-x(cm)

  面積S=x?(5-x)=5x-x2(cm2)

  從以上兩個(gè)題中可以看出,在探索變量間變化規(guī)律時(shí),可利用以前學(xué)過(guò)的一些有關(guān)知識(shí)公式進(jìn)行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.

  Ⅲ.隨堂練習(xí)

 。保(gòu)買(mǎi)一些鉛筆,單價(jià)0.2元/支,總價(jià)y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫(xiě)出關(guān)系式.

  2.一個(gè)三角形的底邊長(zhǎng)5cm,高h(yuǎn)可以任意伸縮.寫(xiě)出面積S隨h變化關(guān)系式,并指出其中常量與變量.

  解:1.買(mǎi)1支鉛筆價(jià)值1×0.2=0.2(元)

  買(mǎi)2支鉛筆價(jià)值2×0.2=0.4(元)

  ……

  買(mǎi)x支鉛筆價(jià)值x×0.2=0.2x(元)

  所以y=0.2x

  其中單價(jià)0.2元/支是常量,總價(jià)y元與支數(shù)x是變量.

 。玻鶕(jù)三角形面積公式可知:

  當(dāng)高h(yuǎn)為1cm時(shí),面積S= ×5×1=2.5cm2

  當(dāng)高h(yuǎn)為2cm時(shí),面積S= ×5×2=5cm2

  … …

  當(dāng)高為hcm,面積S= ×5×h=2.5hcm2

數(shù)學(xué)八年級(jí)上冊(cè)教案8

  一、創(chuàng)設(shè)情景,明確目標(biāo)

  多媒體展示:內(nèi)角三兄弟之爭(zhēng)

  在一個(gè)直角三角形里住著三個(gè)內(nèi)角,平時(shí),它們?nèi)值芊浅F(tuán)結(jié).可是有一天,老二突然不高興,發(fā)起脾氣來(lái),它指著老大說(shuō):“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說(shuō):“這是不可能的,否則,我們這個(gè)家就再也圍不起來(lái)了……”“為什么?”老二很納悶.同學(xué)們,你們知道其中的道理嗎?

  二、自主學(xué)習(xí),指向目標(biāo)

  學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書(shū)》相應(yīng)部分.

  三、合作探究,達(dá)成目標(biāo)

  三角形的內(nèi)角和

  活動(dòng)一:見(jiàn)教材P11“探究”.

  展示點(diǎn)評(píng):從探究的操作中,你能發(fā)現(xiàn)證明的思路嗎?圖中的直線L與△ABC的邊BC有什么關(guān)系?你能想出證明“三角形內(nèi)角和的方法”嗎?證明命題的步驟是什么?證明三角形的內(nèi)角和定理.

  小組討論:有沒(méi)有不同的證明方法?

  反思小結(jié):證明是由題設(shè)出發(fā),經(jīng)過(guò)一步步的推理,最后推出結(jié)論正確的過(guò)程.三角形三個(gè)內(nèi)角的和等于180°.

  針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分

  三角形內(nèi)角和定理的應(yīng)用

  活動(dòng)二:見(jiàn)教材P12例1

  展示點(diǎn)評(píng):題中所求的角是哪個(gè)三角形的一個(gè)內(nèi)角嗎?你能想出幾種解法?

  小組討論:三角形的內(nèi)角和在解題時(shí),如何靈活應(yīng)用?

  反思小結(jié):當(dāng)三角形中已知兩角的讀數(shù)時(shí),可直接用內(nèi)角和定理求第三個(gè)內(nèi)角;當(dāng)三角形中未直接給出兩內(nèi)角的度數(shù)時(shí),可根據(jù)它們之間的關(guān)系列方程解決.

  針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分

  四、總結(jié)梳理,內(nèi)化目標(biāo)

  1.本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:三角形的內(nèi)角和是180°.

  2.三角形內(nèi)角和定理的證明思路是什么?

  3.數(shù)學(xué)思想是轉(zhuǎn)化、數(shù)形結(jié)合.

  《三角形綜合應(yīng)用》精講精練

  1. 現(xiàn)有3 cm,4 cm,7 cm,9 cm長(zhǎng)的四根木棒,任取其中三根組成一個(gè)三角形,那么可以組成的三角形的個(gè)數(shù)是( )

  A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

  2. 如圖,用四個(gè)螺絲將四條不可彎曲的木條圍成一個(gè)木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為2,3,4,6,且相鄰兩木條的.夾角均可調(diào)整.若調(diào)整木條的夾角時(shí)不破壞此木框,則任兩螺絲之間的距離最大值是( )

  A.5 B.6 C.7 D.10

  3.下列五種說(shuō)法:①三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角;

 、谌切蔚娜齻(gè)內(nèi)角中至少有一個(gè)鈍角;③一個(gè)三角形中,至少有一個(gè)角不小于60°;④鈍角三角形中,任意兩個(gè)內(nèi)角的和必大于90°;⑤直角三角形中兩銳角互余.其中正確的說(shuō)法有________(填序號(hào)).

  《11.2與三角形有關(guān)的角》同步測(cè)試

  4.(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,∠ACD與∠B有什么關(guān)系?為什么?

  (2)如圖②,在Rt△ABC中,∠C=90°,D,E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀.為什么?

  (3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,點(diǎn)C,B,E在同一直線上,∠A與∠D有什么關(guān)系?為什么?

數(shù)學(xué)八年級(jí)上冊(cè)教案9

  Ⅰ.教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識(shí)與技能 使學(xué)生理解正比例函數(shù)的概念,會(huì)用描點(diǎn)法畫(huà)正比例函數(shù)圖象,掌握正比例函數(shù)的性質(zhì).

  過(guò)程與能力 培養(yǎng)學(xué)生數(shù)學(xué)建模的能力.

  情感與態(tài)度 實(shí)例引入,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  教學(xué)重點(diǎn) 探索正比例函數(shù)的性質(zhì).

  教學(xué)難點(diǎn) 從實(shí)際問(wèn)題情境中建立正比例函數(shù)的數(shù)學(xué)模型.

 、.教學(xué)過(guò)程設(shè)計(jì)

  問(wèn)題及師生行為 設(shè)計(jì)意圖

  一、創(chuàng)設(shè)問(wèn)題,激發(fā)興趣

  【問(wèn)題1】將下列問(wèn)題中的變量用函數(shù)表示出來(lái):

  (1)小明騎自行車(chē)去郊游,速度為4km/h,其行駛路程y隨時(shí)間x變化而變化;

  (2)三角形的底為10cm,其面積y隨高x的變化而變化;

  (3)筆記本的單價(jià)為3元,買(mǎi)筆記本所要的錢(qián)數(shù)y隨作業(yè)本數(shù)量x的變化而變化.

  解:(1)y=4x;(2)y=5x;(3)y=3x.

  教師提出問(wèn)題,學(xué)生獨(dú)立思考并回答問(wèn)題.

  教師點(diǎn)評(píng),并且提醒學(xué)生注意用x表示y. 問(wèn)題引入,為新知作好鋪墊.

  二、誘導(dǎo)參與,探究新知

  思考:觀察函數(shù)關(guān)系式:

  ① y=4x; ② y=5x; ③ y=3x.

  這些函數(shù)有什么特點(diǎn)?

  都是y等于一個(gè)常量與x的乘積.

  教師提出問(wèn)題,并引導(dǎo)學(xué)生觀察:

  學(xué)生觀察思考并回答問(wèn)題.

  三、引導(dǎo)歸納,提煉新知

  (板書(shū))正比例函數(shù)的概念:

  一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).

  注意:x 的取值范圍是全體實(shí)數(shù).

  由教師引導(dǎo),學(xué)生觀察得出結(jié)論.體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的關(guān)系.

  通過(guò)板書(shū),突出本節(jié)課的重點(diǎn).

  四、指導(dǎo)應(yīng)用,發(fā)展能力

  1.下列函數(shù)是否是正比例函數(shù)?比例系數(shù)是多少?

  (1) 是,比例系數(shù)k=8. (2) 不是.

  (3) 是,比例系數(shù)k= . (4) 不是.

  填空

  1.若函數(shù)y=(2m2+8)xm2-8+(m+3)是正比例函數(shù),則m的值是___-3____.

  題 1請(qǐng)學(xué)生口答, 題2學(xué)生獨(dú)立完成,并到黑板板書(shū),教師評(píng)價(jià)書(shū)寫(xiě)規(guī)范.

  在本次活動(dòng)中,教師要關(guān)注:

  學(xué)生能否準(zhǔn)確地理解正比例函數(shù)的定義,注意二次項(xiàng)系數(shù)不能為0.

  五、探究新知

  例1 畫(huà)出正比例函數(shù)y=x的圖象.

  解:(1)列表:

  x --- -2 -1 0 1 2 ---

  y --- -2 -1 0 1 2 ---

  畫(huà)出函數(shù)y=x的`圖象.

  (1)列表: (2)描點(diǎn): (3)連線:

  想一想

  除了用描點(diǎn)法外,還有其他簡(jiǎn)單的方法畫(huà)正比例函數(shù)圖象嗎?

  根據(jù)兩點(diǎn)確定一條直線,我們可以經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,k)畫(huà)直線,即兩點(diǎn)法.

  同理,畫(huà)出y=-x的圖象.

  師生共同分析:兩個(gè)圖象的共同點(diǎn):都是經(jīng)過(guò)原點(diǎn)的直線.不同點(diǎn):函數(shù)y=x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大,經(jīng)過(guò)第一、三象限.

  函數(shù)y=-x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減小,經(jīng)過(guò)第二、四象限.

  歸納:一般地,正比例函數(shù)y=kx(k是常數(shù),k≠ 0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線.

  當(dāng)k>0時(shí),圖象經(jīng)過(guò)一、三象限,從左向右上升,即隨x的增大y也增大;

  當(dāng)k<0時(shí),圖象經(jīng)過(guò)二、四象限,從左向右下降,即隨x增大y反而減小.

  由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx.

  六、指導(dǎo)應(yīng)用,發(fā)展能力

  例2 在同一直角坐標(biāo)系中畫(huà)出y=x,y=2x,y=3x的函數(shù)圖象,并比較它們的異同點(diǎn).

  相同點(diǎn):圖象經(jīng)過(guò)一、三象限,從左向右上升;

  不同點(diǎn):傾斜度不同, y=x,y=2x,y=3x的函數(shù)圖象離y軸越來(lái)越近.

  例3 在同一直角坐標(biāo)系中畫(huà)出y=-x,y=-2x,y=-3x的函數(shù)圖象,并比較它們的異同點(diǎn).

  相同點(diǎn):圖象經(jīng)過(guò)二、四象限,從左向右下降;

  不同點(diǎn):傾斜度不同, y=-x,y=-2x,y=-3x的函數(shù)圖象離y軸越來(lái)越近.

  在y=kx中,k的絕對(duì)值越大,函數(shù)圖象越靠近y軸.

數(shù)學(xué)八年級(jí)上冊(cè)教案10

  教學(xué)目標(biāo):

 。1)通過(guò)觀察操作,認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn),掌握軸對(duì)稱圖形的概念。

 。2)能準(zhǔn)確判斷哪些事物是軸對(duì)稱圖形。

 。3)能找出并畫(huà)出軸對(duì)稱圖形的對(duì)稱軸。

 。4)通過(guò)實(shí)驗(yàn),培養(yǎng)學(xué)生的抽象思維和空間想象能力。

 。5)結(jié)合教材和聯(lián)系生活實(shí)際培養(yǎng)學(xué)生的學(xué)習(xí)興趣和熱愛(ài)生活的情感。

  教學(xué)重點(diǎn):

 。1)認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn),建立軸對(duì)稱圖形的概念;

 。2)準(zhǔn)確判斷生活中哪些事物是軸對(duì)稱圖形。

  教學(xué)難點(diǎn):

  根據(jù)本班學(xué)生學(xué)習(xí)的實(shí)際情況,本節(jié)課教學(xué)的難點(diǎn)是找軸對(duì)稱圖形的對(duì)稱軸。

  教學(xué)過(guò)程:

  一、認(rèn)識(shí)對(duì)稱物體

  1、出示物體:今天秦老師給大家?guī)?lái)了一些物體,這是我們學(xué)校的同學(xué)參加數(shù)學(xué)競(jìng)賽獲得的獎(jiǎng)杯。這時(shí)一架轟炸戰(zhàn)斗機(jī)。這是海獅頂球。

  2、請(qǐng)同學(xué)們仔細(xì)觀察這些物體,想一想它們的外形有什么共同的特點(diǎn)。(可能的回答:對(duì)稱)

 。ǖ糠謱W(xué)生這時(shí)并不真正理解何為對(duì)稱)

  追問(wèn):對(duì)稱?你是怎樣理解對(duì)稱的呢?

 。ǹ赡艿幕卮穑簝蛇吺且粯拥模

  像這樣兩邊形狀、大小都完全相同的物體,我們就說(shuō)它是對(duì)稱的。(板書(shū):對(duì)稱)像這樣對(duì)稱的物體,在我們的生活中你看到過(guò)嗎?誰(shuí)來(lái)說(shuō)說(shuō)看?

 。ǹ赡苷_的回答:蝴蝶、蜻蜓……)

 。ǹ赡苠e(cuò)誤的回答:剪刀)

  若有錯(cuò)誤答案則如此處理。追問(wèn):剪刀是不是對(duì)稱的?學(xué)生產(chǎn)生分歧,有說(shuō)是,有說(shuō)不是。剪刀兩邊不是完全一樣的,所以它不對(duì)稱。但是沿著輪廓把它畫(huà)在紙上,是一個(gè)對(duì)稱的。

  二、認(rèn)識(shí)對(duì)稱圖形

  1、這些對(duì)稱的物體,我們把它畫(huà)在紙上,就得到這樣一些平面圖形。(出示圖片)這些圖形還是對(duì)稱的嗎?(是對(duì)稱的)

  同學(xué)們真聰明,一眼就能看出這些圖形都是對(duì)稱的。那么像這樣的圖形,我們就把它們叫做——(生齊說(shuō):對(duì)稱圖形)

 。◣熢凇皩(duì)稱”后接著板書(shū):圖形)

  2、是不是所有的圖形都是對(duì)稱的?它們又是怎樣對(duì)稱的?我們又怎樣證明它們是不是對(duì)稱圖形?這就是我們這節(jié)課要研究的問(wèn)題。為了研究這些問(wèn)題,老師還帶來(lái)了一些平面圖形,你們看——

  (師在黑板上貼出圖形)

  邊貼邊說(shuō):汽車(chē)圖形、鑰匙圖形、桃子圖形、蝴蝶圖形、青蛙圖形、豎琴圖形、香港區(qū)徽?qǐng)D形。

  這些圖形都是對(duì)稱的嗎?(不是)

  3、你們能給它們分分類嗎?(能)誰(shuí)愿意上來(lái)分一分?

  你準(zhǔn)備怎么分類?(分成兩類:一類是對(duì)稱圖形,一類是不對(duì)稱圖形)

  問(wèn)全班同學(xué):你們同意嗎?(同意)

  你們?cè)趺粗肋@些圖形就是對(duì)稱圖形?有什么辦法來(lái)證明嗎?(對(duì)折)

  好,我們用這個(gè)辦法試一下。誰(shuí)愿意上來(lái)折給大家看的?自己上來(lái),選擇一個(gè)喜歡的圖形折給大家看。

  4、圖形對(duì)折后你發(fā)現(xiàn)了什么?誰(shuí)先說(shuō)?(可能的回答:對(duì)折后兩邊一樣或?qū)φ酆髢蛇呏丿B)

  你們所說(shuō)的兩邊一樣、兩邊重疊,也就是說(shuō)對(duì)折后兩邊重合了。

 。◣煱鍟(shū):重合)(若有說(shuō)出完全重合則板書(shū):完全重合)

  請(qǐng)將對(duì)折后的對(duì)稱圖形貼到黑板上,謝謝。

  師指不對(duì)稱圖形。同學(xué)們剛才我們通過(guò)把這些對(duì)稱圖形對(duì)折,發(fā)現(xiàn)對(duì)折后兩邊重合了,現(xiàn)在再請(qǐng)幾位同學(xué)上來(lái)折一折不對(duì)稱圖形,看看這次又有什么發(fā)現(xiàn)?還是自己上來(lái)。

  折后你發(fā)現(xiàn)了什么?(可能的回答:沒(méi)有重合、對(duì)折后兩邊不一樣)它們有沒(méi)有重合?一點(diǎn)點(diǎn)重合都沒(méi)有嗎?

 。ㄓ幸稽c(diǎn)重合)

  拿一個(gè)對(duì)稱圖形和同學(xué)折過(guò)的不對(duì)稱圖形比較。這個(gè)圖形對(duì)折后重合了,這個(gè)也重合了,那這兩種重合有什么不一樣嗎?

 。ǹ赡艿幕卮穑哼@個(gè)全部重合了,這個(gè)沒(méi)有)

  這些對(duì)稱的圖形對(duì)折后全部重合了,也就是完全重合了!

 。◣熢凇爸睾稀鼻鞍鍟(shū):完全)而不對(duì)稱圖形只是部分重合。

  好,謝謝你們,請(qǐng)將圖形放這(不對(duì)稱圖形下黑板)

  大家的表現(xiàn)非常出色,獎(jiǎng)勵(lì)一下我們自己,來(lái)拍拍手吧!

  “一——二——停!”我們的.兩只手掌現(xiàn)在是——

  (生齊說(shuō):完全重合)

  三、認(rèn)識(shí)對(duì)稱軸,對(duì)稱軸的畫(huà)法

  同學(xué)們都很聰明,課前你們都準(zhǔn)備了彩紙、剪刀,如果請(qǐng)你用這些材料創(chuàng)作一個(gè)對(duì)稱圖形,行嗎?

  1、請(qǐng)將你創(chuàng)作的對(duì)稱圖形,慢慢打開(kāi),問(wèn):你們發(fā)現(xiàn)了什么?

 。ㄖ虚g有一條折痕)

  大家把手中的對(duì)稱圖形舉起來(lái),看看是不是每個(gè)對(duì)稱圖形中間——都有一條折痕。這些折痕的左右兩邊——(生齊說(shuō):完全重合)。

  這條折痕所在的直線,有它獨(dú)有的名稱叫做“對(duì)稱軸”。

 。ㄔ凇皩(duì)稱圖形”前板書(shū):軸)

  像這樣的圖形,我們就把它們叫做“軸對(duì)稱圖形”。

 。◣熓种赴鍟(shū),邊說(shuō)邊把“對(duì)折——完全重合——軸對(duì)稱圖形”連起來(lái))

  現(xiàn)在大家知道了這個(gè)圖形是——軸對(duì)稱圖形。這個(gè)呢?這個(gè)呢?他們都是——軸對(duì)稱圖形。接下來(lái)請(qǐng)你看著自己創(chuàng)作的圖形說(shuō)說(shuō)。

  誰(shuí)來(lái)說(shuō)說(shuō),怎樣的圖形是軸對(duì)稱圖形?

  可以上來(lái)拿一個(gè)軸對(duì)稱圖形說(shuō)。請(qǐng)學(xué)生用自己的語(yǔ)言說(shuō)。

  2、師拿一張軸對(duì)稱圖形,隨便折兩下。

  這是一個(gè)軸對(duì)稱圖形嗎?是的。師隨便折兩下。

  誰(shuí)來(lái)說(shuō)說(shuō)這個(gè)軸對(duì)稱圖形的對(duì)稱軸是那條?

 。ㄒ粭l都不是。)為什么?

  只有對(duì)折后兩邊完全重合的折痕才是對(duì)稱軸。

  請(qǐng)你來(lái)折出它的對(duì)稱軸。通常我們用點(diǎn)劃線表示對(duì)稱軸。

  師示范。請(qǐng)你在所創(chuàng)作的軸對(duì)稱圖形上用點(diǎn)劃線表示出對(duì)稱軸。

  四、平面圖形中的軸對(duì)稱圖形,及它們的對(duì)稱軸各有幾條。

  1、對(duì)于軸對(duì)稱圖形,其實(shí)我們并不陌生,在我們認(rèn)識(shí)的一些平面圖形中應(yīng)該就有一些是軸對(duì)稱圖形。我們先回憶一下學(xué)習(xí)過(guò)的平面圖形有哪些?

 。ǹ赡艿幕卮穑赫叫、長(zhǎng)方形、平行四邊形、圓形、梯形、三角形等等)(教師板書(shū),適當(dāng)布局)

  同學(xué)們說(shuō)的是否正確呢?用什么辦法來(lái)證明?(對(duì)折)如果它是軸對(duì)稱圖形,那它有幾條對(duì)稱軸呢?

  好,那我們就拿出課前準(zhǔn)備的平面圖形,用對(duì)折的方法來(lái)證明,注意如果它有對(duì)稱軸請(qǐng)你折出來(lái)。

  結(jié)論出來(lái)了嗎?現(xiàn)在你的判斷和剛才還是一樣的嗎?

  3、問(wèn):你想?yún)R報(bào)什么?學(xué)生匯報(bào)。教師機(jī)動(dòng)回答,回答語(yǔ)可有:

  這位同學(xué)既能給出判斷結(jié)果,又能說(shuō)出判斷的理由,非常好。

  看來(lái),僅靠經(jīng)驗(yàn)、觀察得出的結(jié)論有時(shí)并不準(zhǔn)確,還需要?jiǎng)邮謱?shí)驗(yàn)進(jìn)行驗(yàn)證。

  能抓住軸對(duì)稱圖形的特征進(jìn)行分析,不錯(cuò)!

  也許一般的平行四邊形不是軸對(duì)稱圖形,但有些特殊的平行四邊形卻是比如:長(zhǎng)方形和正方形。以此類推……

  圓有無(wú)數(shù)條對(duì)稱軸。所有的圓都是軸對(duì)稱圖形。

  討論平行四邊形、梯形、三角形時(shí),我們既要考慮一般的圖形,又要考慮特殊的圖形。但是關(guān)于圓形,我們卻無(wú)需考慮這么多,正如你所說(shuō)的,所有的圓都是軸對(duì)稱圖形,不存在什么特殊的情況?磥(lái),數(shù)學(xué)學(xué)習(xí)中,具體的問(wèn)題還得具體對(duì)待。

 。ㄒ话闳切、一般梯形、直角梯形、一般平行四邊形不是軸對(duì)稱圖形,等腰三角形、等腰梯形、正三角形、長(zhǎng)方形、正方形和圓都是軸對(duì)稱圖形)等腰梯形(1條),正五邊形(5條),圓(無(wú)數(shù)條)

  4、用測(cè)量的方法找對(duì)稱軸。

  剛才,大家都用對(duì)折的方法找出了他們的對(duì)稱軸,但是如果老師請(qǐng)你在黑板面上找出對(duì)稱軸呢?

  大家都有一張長(zhǎng)方形紙,假設(shè)它就是不能對(duì)折的黑板面,怎么畫(huà)出它的對(duì)稱軸?(我們可以用測(cè)量的方法,來(lái)找出對(duì)邊的中點(diǎn),連結(jié)中點(diǎn)。用同樣的方法,我們可以畫(huà)出另一條對(duì)稱軸。

  現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)本,畫(huà)出書(shū)上長(zhǎng)方形的對(duì)稱軸。(小組內(nèi)交流檢查)

  五、練習(xí)

  1、學(xué)習(xí)了什么是軸對(duì)稱圖形,現(xiàn)在請(qǐng)?jiān)谀闵磉叺奈矬w上找出三個(gè)軸對(duì)稱圖形。(瓷磚面、電視機(jī)柜、衣服、國(guó)旗?、凳面、桌面)

  問(wèn):國(guó)旗是軸對(duì)稱圖形嗎?

  產(chǎn)生沖突。說(shuō)明:不但要觀察外形,還要觀察里面的圖案。

  2、判斷國(guó)旗是否是軸對(duì)稱圖形。

  3、找阿拉伯?dāng)?shù)字中的軸對(duì)稱圖形

  4、領(lǐng)略窗花的美麗,再?gòu)闹姓业絼?chuàng)作的靈感,創(chuàng)作軸對(duì)稱圖形。教師可出示一些指導(dǎo)性圖片。

  選擇一些貼到黑板上,最后出示“美”字。

  總結(jié):軸對(duì)稱圖形非常美麗,因此被廣泛的運(yùn)用于服裝、家具、交通、商標(biāo)等方面的設(shè)計(jì)中,希望大家能夠運(yùn)用今天的知識(shí),把我們的教室、把你的家以后把我們的祖國(guó)裝扮得更漂亮。

數(shù)學(xué)八年級(jí)上冊(cè)教案11

  教學(xué)目標(biāo)

  一、教學(xué)知識(shí)點(diǎn):

  1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).

  二、能力訓(xùn)練要求:

  1.通過(guò)具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.

  2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個(gè)圖形對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).

  三、情感與價(jià)值觀要求

  1.經(jīng)歷對(duì)生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動(dòng)手操作、畫(huà)圖等過(guò)程,掌握有關(guān)畫(huà)圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí).

  2.通過(guò)學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問(wèn)題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.

  教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).

  教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).

  教學(xué)方法:

  1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。

  2、采用多媒體課件輔助教學(xué)。

  教學(xué)過(guò)程:

  一.巧設(shè)情景問(wèn)題,引入課題

  日常生活中,我們經(jīng)常見(jiàn)到以下情景(出示圖示:鐘表、汽車(chē)方向盤(pán)、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動(dòng)、汽車(chē)方向盤(pán)的轉(zhuǎn)動(dòng)、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動(dòng)現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,其形狀、大小、位置是否發(fā)生改變?汽車(chē)方向盤(pán)的轉(zhuǎn)動(dòng)呢?

  1.在這些轉(zhuǎn)動(dòng)的現(xiàn)象中,它們都是繞著一個(gè)點(diǎn)轉(zhuǎn)動(dòng)的.

  2.每個(gè)物體的轉(zhuǎn)動(dòng)都是向同一個(gè)方向轉(zhuǎn)動(dòng).

  3.鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,它的形狀、大小沒(méi)有變化,只是它的位置有所改變.

  4.汽車(chē)的方向盤(pán)在轉(zhuǎn)動(dòng)過(guò)程中,同樣它的形狀、大小沒(méi)有改變,方向盤(pán)上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動(dòng)叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來(lái)探討生活中的旋轉(zhuǎn).

  二.講授新課

  在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個(gè)圖形繞著一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn)(circumrotate).這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角.注意:“將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度”意味著圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方式轉(zhuǎn)動(dòng)相同的角度.在物體繞著一個(gè)定點(diǎn)轉(zhuǎn)動(dòng)時(shí),它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁(yè))答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.

  (2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時(shí)點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長(zhǎng)短、形狀沒(méi)有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過(guò)程中,圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.

  (4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A移動(dòng)到點(diǎn)D的位置,點(diǎn)B移動(dòng)到點(diǎn)E的位置,點(diǎn)C移動(dòng)到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對(duì)應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?

  答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對(duì)應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長(zhǎng)度是相等的.

  因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.

  由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過(guò)旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度.任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.

 。劾1](課本68頁(yè)例1)

 。蹘熒参觯萁(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤(pán)的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時(shí)的'度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過(guò)的度數(shù)是6°,這樣20分時(shí),分針逆轉(zhuǎn)的角度即可求出.

  解:(見(jiàn)課本68頁(yè))

  書(shū)上68頁(yè)做一做

  三.課堂練習(xí)

  課本P69隨堂練習(xí).

  1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.

  四.課時(shí)小結(jié)

  五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.

  六.活動(dòng)與探究

  1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過(guò)程:讓學(xué)生畫(huà)圖、找規(guī)律,也可讓他們通過(guò)剪切,找到旋轉(zhuǎn)規(guī)律.

  結(jié)果:旋轉(zhuǎn)現(xiàn)象為:

  整個(gè)圖形可以看做是圖形的八分之一(一組大小不等的三個(gè)“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個(gè)圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.

  整個(gè)圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個(gè)三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的?

  過(guò)程:同樣讓學(xué)生在畫(huà)圖過(guò)程中體會(huì)圖形中每個(gè)三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.

  結(jié)果:圖中存在這樣的三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的.

  整個(gè)圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.

  整個(gè)圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  板書(shū)設(shè)計(jì):

  教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動(dòng)形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。

數(shù)學(xué)八年級(jí)上冊(cè)教案12

  教學(xué)目標(biāo):

  1、理解運(yùn)用平方差公式分解因式的方法。

  2、掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

  3、進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用平方差公式分解因式。

  教學(xué)難點(diǎn):

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

  教學(xué)案例:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:

  1、整式乘法中的平方差公式是xxx,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到xxxxx,如何用語(yǔ)言描述?

  2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫(xiě)出分解過(guò)程,若不能,說(shuō)出為什么?

 、-x2+y2②-x2-y2③4-9x2

  ④(x+y)2-(x-y)2⑤a4-b4

  3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?

  4、仿照例4的`分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。

  生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。

  生5:a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對(duì),a2-b2還能繼續(xù)分解為a+b)(a-b)

  師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的'條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:

  (1)我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:

  下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。

  (2)教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫(xiě)一些簡(jiǎn)單的,像④、⑤可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。

  我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試!鄙珠_(kāi)始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……。看來(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。

  確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……

數(shù)學(xué)八年級(jí)上冊(cè)教案13

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.經(jīng)歷探索積的乘方的運(yùn)算法則的過(guò)程,進(jìn)一步體會(huì)冪的意義。

  2.理解積的乘方運(yùn)算法則,能解決一些實(shí)際問(wèn)題。

 。ǘ┠芰τ(xùn)練要求

  1.在探究積的乘方的運(yùn)算法則的過(guò)程中,發(fā)展推理能力和有條理的表達(dá)能力。

  2.學(xué)習(xí)積的乘方的運(yùn)算法則,提高解決問(wèn)題的能力。

 。ㄈ┣楦信c價(jià)值觀要求

  在發(fā)展推理能力和有條理的語(yǔ)言、符號(hào)表達(dá)能力的同時(shí),進(jìn)一步體會(huì)學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡(jiǎn)潔美。

  教學(xué)重點(diǎn)

  積的乘方運(yùn)算法則及其應(yīng)用。

  教學(xué)難點(diǎn)

  冪的運(yùn)算法則的靈活運(yùn)用。

  教學(xué)方法

  自學(xué)─引導(dǎo)相結(jié)合的方法。

  同底數(shù)冪的乘法、冪的乘方、積的乘方成一個(gè)體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的`運(yùn)算方法,能解決一些實(shí)際問(wèn)題。

  教具準(zhǔn)備

  投影片.

  教學(xué)過(guò)程

  Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

  [師]還是就上節(jié)課開(kāi)課提出的問(wèn)題:若已知一個(gè)正方體的棱長(zhǎng)為1.1×103cm,你能計(jì)算出它的體積是多少嗎?

  [生]它的體積應(yīng)是V=(1.1×103)3cm3。

  [師]這個(gè)結(jié)果是冪的乘方形式嗎?

  [生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來(lái)看,我認(rèn)為應(yīng)是積的乘方才有道理。

  [師]你分析得很有道理,積的乘方如何運(yùn)算呢?能不能找到一個(gè)運(yùn)算法則?有前兩節(jié)課的探究經(jīng)驗(yàn),老師想請(qǐng)同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。

 、颍畬(dǎo)入新課

  老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。

  出示投影片

  1.填空,看看運(yùn)算過(guò)程用到哪些運(yùn)算律,從運(yùn)算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?

 。1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

 。2)(ab)3=______=_______=a()b()

  (3)(ab)n=______=______=a()b()(n是正整數(shù))

  2.把你發(fā)現(xiàn)的規(guī)律用文字語(yǔ)言表述,再用符號(hào)語(yǔ)言表達(dá)。

  3.解決前面提到的正方體體積計(jì)算問(wèn)題。

  4.積的乘方的運(yùn)算法則能否進(jìn)行逆運(yùn)算呢?請(qǐng)驗(yàn)證你的想法。

  5.完成課本P170例3。

  學(xué)生探究的經(jīng)過(guò):

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。

數(shù)學(xué)八年級(jí)上冊(cè)教案14

  一、教學(xué)目標(biāo)

  知識(shí)與技能

  1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.

  2、了解開(kāi)立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根.

  過(guò)程與方法

  1讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性.

  2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會(huì)立方與開(kāi)立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。

  情感態(tài)度與價(jià)值觀

  通過(guò)立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn)

  立方根的概念和求法。

  難點(diǎn)

  立方根與平方根的區(qū)別,立方根的`求法

  三、學(xué)情分析

  前面已經(jīng)學(xué)過(guò)了平方根的知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來(lái)引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺(jué)到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識(shí)和新問(wèn)題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。

  四、教學(xué)過(guò)程設(shè)計(jì)

  教學(xué)環(huán)節(jié)問(wèn)題設(shè)計(jì)師生活動(dòng)備注

  情境創(chuàng)設(shè)問(wèn)題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?

  設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27.

  因?yàn)?27,所以x=3.即這種包裝箱的邊長(zhǎng)應(yīng)為3m

  歸納:

  立方根的概念:

  創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。

  通過(guò)具體問(wèn)題得出立方根的概念

  探究一:

  根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?

  因?yàn)椋ǎ,所?.125的立方根是()

  因?yàn)椋ǎ?8的立方根是()

  因?yàn)椋ǎ,所?0.125的立方根是()

  因?yàn)椋ǎ?的立方根是()

  一個(gè)正數(shù)有一個(gè)正的立方根

  0有一個(gè)立方根,是它本身

  一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根

  任何數(shù)都有唯一的立方根

  【總結(jié)歸納】

  一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開(kāi)方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.

  探究二:

  因?yàn)樗?

  因?yàn)椋?總結(jié):

  利用開(kāi)立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。

數(shù)學(xué)八年級(jí)上冊(cè)教案15

  教學(xué)內(nèi)容

  本節(jié)課主要介紹全等三角形的概念和性質(zhì).

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.

  2.過(guò)程與方法

  經(jīng)歷探索全等三角形性質(zhì)的過(guò)程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.

  2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.

  3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備

  四張大小一樣的紙片、直尺、剪刀.

  教學(xué)方法

  采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過(guò)程

  一、動(dòng)手操作,導(dǎo)入課題

  1.先在其中一張紙上畫(huà)出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

  2.重新在一張紙板上畫(huà)出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

  【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.

  【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.

  學(xué)生在操作過(guò)程中,教師要讓學(xué)生事先在紙上畫(huà)出三角形,然后固定重疊的兩張紙,注意整個(gè)過(guò)程要細(xì)心.

  【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的`兩個(gè)圖形叫做全等形,用“≌”表示.

  概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.

  【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?

  【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.

  【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.

  【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

  【交流討論】通過(guò)同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

  1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.

  2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.

  3.完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.

【數(shù)學(xué)八年級(jí)上冊(cè)教案】相關(guān)文章:

數(shù)學(xué)八年級(jí)上冊(cè)教案03-02

初中數(shù)學(xué)八年級(jí)上冊(cè)教案02-06

八年級(jí)上冊(cè)數(shù)學(xué)教案01-13

八年級(jí)數(shù)學(xué)上冊(cè)教案02-27

八年級(jí)上冊(cè)數(shù)學(xué)優(yōu)秀教案01-23

數(shù)學(xué)八年級(jí)上冊(cè)教案15篇03-02

數(shù)學(xué)八年級(jí)上冊(cè)教案(15篇)03-02

數(shù)學(xué)上冊(cè)教案01-15

初中數(shù)學(xué)八年級(jí)上冊(cè)教案精選5篇06-05

人教版八年級(jí)數(shù)學(xué)上冊(cè)教案01-26