- 相關推薦
高一數(shù)學對數(shù)函數(shù)教案
作為一名老師,就難以避免地要準備教案,編寫教案有利于我們科學、合理地支配課堂時間。如何把教案做到重點突出呢?下面是小編為大家整理的高一數(shù)學對數(shù)函數(shù)教案,僅供參考,歡迎大家閱讀。
教學目標:
(一)教學知識點:
1.對數(shù)函數(shù)的概念;
2.對數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓練要求:
1.理解對數(shù)函數(shù)的概念;
2.掌握對數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標:
1.用聯(lián)系的觀點分析問題;
2.認識事物之間的互相轉化.
教學重點:
對數(shù)函數(shù)的圖象和性質(zhì)
教學難點:
對數(shù)函數(shù)與指數(shù)函數(shù)的'關系
教學方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學輔助:
多媒體
教學過程:
一、引入對數(shù)函數(shù)的概念
由學生的預習,可以直接回答“對數(shù)函數(shù)的概念”
由指數(shù)、對數(shù)的定義及指數(shù)函數(shù)的概念,我們進行類比,可否猜想有:
問題:
1.指數(shù)函數(shù)是否存在反函數(shù)?
2.求指數(shù)函數(shù)的反函數(shù).
3.結論
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).
二、講授新課
1.對數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對數(shù)函數(shù)的圖象和性質(zhì):
因為對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關于直線對稱.
因此,我們只要畫出和圖象關于直線對稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時,我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關于直線對稱的曲線得到的圖象.
還可以畫出與圖象關于直線對稱的曲線得到的圖象.
請同學們作出與的草圖,并觀察它們具有一些什么特征?
對數(shù)函數(shù)的圖象與性質(zhì):
(1)定義域:
(2)值域:
(3)過定點,即當時,
(4)上的增函數(shù)
(4)上的減函數(shù)
3.練習:
(1)比較下列各組數(shù)中兩個值的大。
(2)解關于x的不等式:
思考:(1)比較大小:
(2)解關于x的不等式:
三、小結
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).并且研究了對數(shù)函數(shù)的圖象和性質(zhì).
四、課后作業(yè)
課本P85,習題2.8,1、3
【高一數(shù)學對數(shù)函數(shù)教案】相關文章:
《對數(shù)函數(shù)》教案03-01
高一數(shù)學教案01-17
高一數(shù)學根式的教案02-07
高一數(shù)學教案【薦】01-24
高一數(shù)學教案【推薦】01-24
高一數(shù)學教案【熱門】01-24
【薦】高一數(shù)學教案01-31
高一數(shù)學必修一教案02-07
高一數(shù)學教案【精】02-04