- 相關推薦
平行線的性質與判定教學反思
平行線的性質與判定教學反思
課程理念認識:
平行線的判定與性質分別是人教版七年級下冊第五章中5.2.2和5.3.1的知識。
雖然學生在小學已經(jīng)接觸過平行線,都能正確的認出平行線并且會畫平行線,但是他們還不具備用數(shù)學語言進行說理的能力。平行線的性質和判定是學生在中學階段首次遇到的具有嚴格證明步驟要求的幾何知識。學好這兩節(jié)知識對學生用演繹推理方法證明幾何圖形的性質具有非常重要的作用。
教材對這兩節(jié)課的知識要求是,能夠用同位角、內錯角、同旁內角判斷兩條直線是否平行,能夠從同位角、內錯角、同旁內角的角度考慮平行線的性質。而且平行線的性質是在學習了平行線的判定的基礎上進行的。
我在教學中發(fā)現(xiàn),學生對于平行線的性質和判定定理在實際運用中很容易混淆。
如下題:
A D
C
(1)因為∠ABD=∠BDC,所以 AB ∥ CD (內錯角相等,兩直線平行)
(2)因為AB ∥ CD,所以∠ABD=∠BDC(兩直線平行,內錯角相等)
兩個題目的理由很多學生會寫混,條件、結論分不清楚。 教學設計心得
一、 對教材的教學順序進行了調整,使知識更具體。
針對上面出現(xiàn)的問題,教學中,我對教材的教學順序大膽進行了調整試驗。我所教的平行班有2個,我在2個平行班級的一個班先學習5.3.2命題、定理,后學習5.3.1平行線的性質;一個班級按照課本的順序學習。我覺得兩個班級的學生對知識的掌握和運用區(qū)別很明顯。
平行線的性質是在學習平行線判斷方法的基礎上進行的,在學習平行線的性質時,我通過創(chuàng)設一個疑問串:①能不能通過兩直線平行,來得到同位角相等呢?②“內錯角相等,兩直線平行”與“兩直線平行,內錯角相等”,這兩個命題有什么區(qū)別和聯(lián)系?你如何區(qū)分與他們?由問題引入新課,激發(fā)學生的思考,進而引導學生進行平行線性質的探索,避免平行線性質和平行線判定的混淆。
學生在學習了命題、證明之后,對于一個命題,能正確的說出題設和結論分別是什么,對于命題的題設在前結論一般在后也能有個清楚地認識。所以回答引入的問題②很簡單。在實際運用中,如命題:“同位角相等,兩直線平行”,在學習了命題的有關知識之后,學生可以辨認出題設是兩條直線被第三條直線所截,一組同位角相等,結論是這兩條直線平行。這樣學生就知道,這個命題的結論是兩直線平行。在填寫每一步的理由時發(fā)生混亂的情況就少了。
二、充分利用課件和教具進行展示使知識更直觀。
教學平行線的判定時,利用三角板和直尺作已知直線的平行線的方法,來探究在同位角滿足什么條件的情況下,兩直線平行。使學生感知在三角板的平移過程中,同位角不變從而得到兩條直線互相平行。再進一步把同位角利用其“對頂角”、“鄰補角”轉換出“內錯角”、 “同旁內角”。
在展示完畢后,我詳細寫出判斷的過程,即初步的解答、證明過程,給學生一個印象,免得大家對數(shù)學證明過程產(chǎn)生恐懼心理或是無根無據(jù)的寫,不知道何因得何果。特別是有意識的在條件和結論部分強調,使學生體會體檢和結論的不同。
然后發(fā)揮小組優(yōu)勢,小組同學一起畫圖體會,當“同位角相等,內錯角相等、同旁內角互補“時,才能得到兩條平行線,強化理解記憶。
三、教師板書、學生板演的作用要發(fā)揮。
因為是剛剛接觸幾何證明題,學生在步驟的書寫上難免感到無從下手,我在教學中采用的是集體口頭先仿寫我的解題步驟,或是仿寫例題的解答步驟,或是仿寫同學中寫的比較好的解答步驟,我再出示一個類似的題目,讓學生自己獨立書寫解答步驟,做到慢慢的,逐步的完全放手給學生們!
練習題由易到難分層布置,做完后先小組成員一起對組員的解題步驟進行審查,再在班級中展示。大家一起來發(fā)現(xiàn)步驟中的優(yōu)缺點,互相學習。
教學中的不足
平行線的判定和性質在練習中,我對練習的難度把握的不是很理想,深入的過多,造成了一些中下游學生的學習障礙,在今后的教學中,我要先做好全面教學,再對優(yōu)生拓展提高。
【平行線的性質與判定教學反思】相關文章:
平行線及其判定教案04-28
平行線的性質教案02-22
比的性質教學反思04-08
平行線的性質教學設計方案(精選9篇)12-12
平行線的性質教案 10篇03-25
《等式的性質》教學反思04-03
等式的性質教學反思11-04
《鈉的性質》教學設計及教學反思10-30
圓的切線的判定教學反思(通用6篇)04-19
《不等式的性質》教學反思05-27