久久99热66热这里只有精品,特黄特色的大片在线观看,亚洲日本三级在线观看,国产三级农村妇女在线,亚洲av毛片免费在线观看,哺乳叫自慰在线看,天天干美女av网

最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-10-02 19:51:55 總結(jié) 我要投稿
  • 相關(guān)推薦

最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  在平時(shí)的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)就是學(xué)習(xí)的重點(diǎn)。想要一份整理好的知識(shí)點(diǎn)嗎?下面是小編幫大家整理的最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  考點(diǎn)要求:

  1、幾何體的展開(kāi)圖、幾何體的三視圖仍是高考的熱點(diǎn)。

  2、三視圖和其他的知識(shí)點(diǎn)結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計(jì)算的趨勢(shì)。

  3、重點(diǎn)掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。

  4、要熟悉一些典型的幾何體模型,如三棱柱、長(zhǎng)(正)方體、三棱錐等幾何體的三視圖。

  知識(shí)結(jié)構(gòu):

  1、多面體的結(jié)構(gòu)特征

 。1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

 。2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的`三角形。

  正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

 。3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

 。1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

 。2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

 。3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

 。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

  三視圖的長(zhǎng)度特征:“長(zhǎng)對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長(zhǎng),側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫(huà)法。

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測(cè)畫(huà)法來(lái)畫(huà),基本步驟是:

 。1)畫(huà)幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀圖時(shí),把它們畫(huà)成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長(zhǎng)度不變,平行于y軸的線段,長(zhǎng)度變?yōu)樵瓉?lái)的一半。

  (2)畫(huà)幾何體的高

  在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長(zhǎng)度不變。

  最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  圓的方程定義:

  圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關(guān)系:

  1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。

  ①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

  方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較。

  ①dR,直線和圓相離、

  2、直線和圓相切,這類(lèi)問(wèn)題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

  3、直線和圓相交,這類(lèi)問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題。

  切線的'性質(zhì)

 、艌A心到切線的距離等于圓的半徑;

 、七^(guò)切點(diǎn)的半徑垂直于切線;

  ⑶經(jīng)過(guò)圓心,與切線垂直的直線必經(jīng)過(guò)切點(diǎn);

 、冉(jīng)過(guò)切點(diǎn),與切線垂直的直線必經(jīng)過(guò)圓心;

  當(dāng)一條直線滿(mǎn)足

 。1)過(guò)圓心;

 。2)過(guò)切點(diǎn);

  (3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。

  切線的判定定理

  經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。

  切線長(zhǎng)定理

  從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角。

  最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  冪函數(shù)的性質(zhì):

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的'所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

  如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

  在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

  在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

  而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

  由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

 。2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

 。3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

 。4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

 。6)顯然冪函數(shù)。

  解題方法:換元法

  解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问剑褟?fù)雜的計(jì)算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。

  練習(xí)題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及對(duì)應(yīng)的x值;

  (2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]<f(1)?< p="">

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點(diǎn)。

  (1)求實(shí)數(shù)k的值及函數(shù)f—1(x)的解析式;

 。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍。

  最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

  說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集 Nx或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  關(guān)于屬于的'概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分類(lèi):

  1.有限集 含有有限個(gè)元素的集合

  2.無(wú)限集 含有無(wú)限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

  ① 任何一個(gè)集合是它本身的子集.AA

 、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,A= A ,AB = BA.

  4、全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

【最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高一必修數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-05

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-06

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-02

高一數(shù)學(xué)下知識(shí)點(diǎn)總結(jié)06-09

關(guān)于高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-28

高一必修1數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-31

職高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-28

數(shù)學(xué)高一高二知識(shí)點(diǎn)總結(jié)05-12

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)05-19

數(shù)學(xué)高一函數(shù)知識(shí)點(diǎn)整理07-24