- 相關(guān)推薦
數(shù)學(xué)之美讀書(shū)心得
有了一些收獲以后,可以將其記錄在心得體會(huì)中,這樣能夠讓人頭腦更加清醒,目標(biāo)更加明確。那么心得體會(huì)該怎么寫(xiě)?想必這讓大家都很苦惱吧,下面是小編精心整理的數(shù)學(xué)之美讀書(shū)心得,希望對(duì)大家有所幫助。
數(shù)學(xué)之美讀書(shū)心得1
在網(wǎng)上看到有人推薦吳軍博士的《數(shù)學(xué)之美》,盡管我從事社會(huì)科學(xué)研究,但對(duì)數(shù)學(xué)的推崇一直如此,所以買(mǎi)來(lái)一讀,我的真切體驗(yàn)正如吳軍博士在書(shū)的后記中所說(shuō),把自己“境界提升了一個(gè)層次”。
那么,對(duì)我而言,到底提升了什么境界呢?
首要的肯定是思想境界。在未讀這本書(shū)之前,我知道對(duì)于這個(gè)世界的事件形成的信息集合,人類(lèi)只有兩種方式可以表達(dá),一個(gè)是數(shù)字,一個(gè)是語(yǔ)言。整個(gè)實(shí)數(shù)的集合是無(wú)窮個(gè),而且每個(gè)數(shù)字都是唯一的;整個(gè)世界中的事件也是無(wú)窮個(gè)的,而且每個(gè)事件也時(shí)獨(dú)一無(wú)二的,這樣數(shù)學(xué)中的數(shù)字集合與世界中的事件集合就構(gòu)成一個(gè)一一對(duì)應(yīng)的關(guān)系,所以研究數(shù)字之間的關(guān)系,實(shí)際上就是在研究世界中事件之間的關(guān)系。語(yǔ)言中的概念和世界中的事件之間也是可以構(gòu)成一個(gè)對(duì)應(yīng)關(guān)系的,但問(wèn)題是,語(yǔ)言中概念的集合是有限的,所以它和數(shù)字集合的對(duì)應(yīng)顯然只能是部分對(duì)應(yīng)。
計(jì)算機(jī)科學(xué)的發(fā)展,人類(lèi)需要把語(yǔ)言處理成數(shù)字,因?yàn)橛?jì)算機(jī)只能識(shí)別數(shù)字信號(hào),所以“語(yǔ)言的數(shù)字化”成為計(jì)算機(jī)產(chǎn)生以來(lái)發(fā)展最快、而且最有創(chuàng)新性的領(lǐng)域,而許多華人科學(xué)家成為了這個(gè)領(lǐng)域的頂尖專(zhuān)家,如李開(kāi)復(fù),吳軍博士是卓越的科學(xué)家之一。至此我才感到,在計(jì)算機(jī)主導(dǎo)的世界中,信息化就是數(shù)字化,而最難的數(shù)字化、也是最有成就的.數(shù)字化,就是對(duì)人類(lèi)自然語(yǔ)言的數(shù)字化,因?yàn)槿祟?lèi)的信息幾乎100%是用語(yǔ)言承載、傳播的,計(jì)算機(jī)要與人對(duì)話,變成智能化的機(jī)器,首先要解決的就是語(yǔ)言的數(shù)字化問(wèn)題。但我們?cè)陔娔X上自如地輸入文字時(shí)、或者拿著手機(jī)通話時(shí),我們跟本沒(méi)有意識(shí)到,那些卓越的語(yǔ)言科學(xué)家,早已經(jīng)把我們的語(yǔ)言,轉(zhuǎn)化成數(shù)字信號(hào),通過(guò)輸入、處理、解碼的方式,讓我們無(wú)障礙地聯(lián)絡(luò)、工作。
我似乎感到,語(yǔ)言與數(shù)字的關(guān)系,就是人與自然關(guān)系的接口。套用古希臘畢達(dá)哥拉斯學(xué)派的觀點(diǎn),加上我的理解,即是,數(shù)是萬(wàn)物的本原,語(yǔ)言是人的本原!
吳軍博士似乎也在提升我對(duì)方法的認(rèn)識(shí)境界?茖W(xué)研究的思考方式,習(xí)慣遵循本質(zhì)、規(guī)律、連續(xù)性思維,在語(yǔ)言學(xué)研究的早期,人類(lèi)為了讓計(jì)算機(jī)識(shí)別語(yǔ)言,采用建立語(yǔ)言規(guī)則和語(yǔ)言規(guī)則數(shù)據(jù)庫(kù)的辦法,但最終以失敗告終(20世紀(jì)50—70年代),70年代后科學(xué)家采用了語(yǔ)言統(tǒng)計(jì)模型,研究取得了突飛猛進(jìn)。語(yǔ)言統(tǒng)計(jì)模型的勝利,再一次證明了宇宙量子模型的信念,世界是不連續(xù)的隨機(jī)性的粒子構(gòu)成,人類(lèi)數(shù)千年文明進(jìn)化出來(lái)的語(yǔ)言系統(tǒng),就是動(dòng)態(tài)的隨機(jī)概率事件。其二,物理思維再也難逃牛頓的經(jīng)典本質(zhì)思維方法,即找尋到百分之百確定性的規(guī)律,而信息論思維是研究如何把握不確定性現(xiàn)象,利用概率統(tǒng)計(jì)是不二法門(mén)。其三,語(yǔ)言本質(zhì)上就是信息傳播,只有從通信模型視角才能真正理解計(jì)算機(jī)的功能,對(duì)語(yǔ)言的編碼、處理、傳輸、解碼是計(jì)算機(jī)的強(qiáng)項(xiàng),計(jì)算機(jī)是永遠(yuǎn)不可能理解語(yǔ)言的意思的。
在《數(shù)學(xué)之美》中,吳軍博士對(duì)他的老師、師兄弟、同事的經(jīng)歷、掌故進(jìn)行了敘述,讓我們了解到這些世界一流的學(xué)科家、技術(shù)精英們的為人處世品質(zhì)、鮮明個(gè)性、科學(xué)素養(yǎng)及其管理風(fēng)格。例如賈里尼克對(duì)博士生的嚴(yán)酷淘汰,馬庫(kù)斯對(duì)學(xué)生的寬宏大度,但我感到他們有一樣?xùn)|西是共同的,就是對(duì)科學(xué)創(chuàng)造、頂尖人才的識(shí)別和器重,甚至是無(wú)條件的包容。如此為人的境界才是根本,因?yàn)閭ゴ蟮目茖W(xué)創(chuàng)造畢竟是人做出來(lái)的,只有崇高的人文精神之下才能造就頂尖的人才、一流的科學(xué)和技術(shù)。
觀國(guó)內(nèi)的學(xué)說(shuō)界,官風(fēng)盛行、人情充斥,與這些一流學(xué)說(shuō)群對(duì)科學(xué)創(chuàng)造的賞識(shí)、對(duì)個(gè)性人才的包容,對(duì)科學(xué)探索的熱誠(chéng),可謂相去甚遠(yuǎn)。
看來(lái),我們只能寄希望于年輕一代,但愿吳博士的《數(shù)學(xué)之美》,能讓我們的學(xué)子們,初步體驗(yàn)到科學(xué)精英們卓越的才智與情懷。
數(shù)學(xué)之美讀書(shū)心得2
本書(shū)介紹了Google產(chǎn)品中涉及的自然語(yǔ)言處理、統(tǒng)計(jì)語(yǔ)言模型、中文分詞、信息度量、拼音輸入法、搜索引擎、網(wǎng)頁(yè)排名、密碼學(xué)等內(nèi)容背后的數(shù)學(xué)原理。讓我們看到了布爾代數(shù)、離散數(shù)學(xué)、統(tǒng)計(jì)學(xué)、矩陣計(jì)算、馬爾科夫鏈等似曾相識(shí)的內(nèi)容在實(shí)際生活中的應(yīng)用。相比于其他數(shù)學(xué)題材書(shū)籍,吳軍老師把抽象、深?yuàn)W的數(shù)學(xué)方法解釋得通俗易懂,書(shū)中同時(shí)引用了諸多的歷史典故和人物介紹,給人以很多啟發(fā),也讓人由衷感嘆數(shù)學(xué)的簡(jiǎn)潔和強(qiáng)大。
雖是數(shù)據(jù)專(zhuān)業(yè)畢業(yè),但是才疏學(xué)淺,無(wú)力對(duì)數(shù)學(xué)的美進(jìn)行闡述。僅就書(shū)中兩個(gè)比較喜歡的地方發(fā)表一點(diǎn)不成熟的見(jiàn)解,與諸位共勉。
其一,在講Google的搜素引擎反作弊時(shí)談到做事情的兩種境界“道”和“術(shù)”,術(shù)就是具體的做事方法,而道則是隱藏在問(wèn)題背后的動(dòng)機(jī)和本質(zhì)。在術(shù)這個(gè)層面解決問(wèn)題要付出更多的努力,有點(diǎn)類(lèi)似于我們常說(shuō)的“頭疼醫(yī)頭,腳疼醫(yī)腳”,暫時(shí)不疼了,過(guò)幾天復(fù)發(fā)了,再去醫(yī)治,如此往復(fù),無(wú)法從根本上解決;而只有找到了致病原因,才能做到藥到病除,根本治愈。本人之前參與過(guò)行內(nèi)月終自動(dòng)核對(duì)的研發(fā),月終核對(duì)初期數(shù)據(jù)的不一致性只能靠數(shù)百業(yè)務(wù)人員人工核對(duì)數(shù)據(jù)差異,然后修改數(shù)據(jù),每月1日都要加班加點(diǎn),工作量很大,這是從術(shù)上解決問(wèn)題。后來(lái)找到了產(chǎn)生差異的原因是會(huì)計(jì)核算時(shí)的利息調(diào)整造成的,把這些數(shù)據(jù)接過(guò)來(lái)進(jìn)行相應(yīng)沖減后差異就消失了,業(yè)務(wù)人員也不用來(lái)加班了,這才是從道上解決問(wèn)題。
其二,是在做中文網(wǎng)頁(yè)排名時(shí)提到的從業(yè)界成功的秘訣之一:“先幫助用戶解決80%的問(wèn)題,再慢慢解決剩下的20%的問(wèn)題。許多時(shí)候做事失敗,不是因?yàn)槿瞬粔騼?yōu)秀,而是做事的方法不對(duì)。一開(kāi)始追求大而全的.解決方案,之后長(zhǎng)時(shí)間不能完成,最后不了了之”。我們?cè)谧鲰?xiàng)目時(shí)也是一樣,業(yè)務(wù)有時(shí)要的功能非常急,可能有些功能也實(shí)現(xiàn)不了(比如系統(tǒng)響應(yīng)時(shí)間長(zhǎng)、查詢(xún)明細(xì)不能支持省行等)。這時(shí)我們就要將焦點(diǎn)關(guān)注在那些可以實(shí)現(xiàn)的80%的功能上,哪怕剛剛上線的系統(tǒng)界面丑點(diǎn),操作復(fù)雜點(diǎn),反應(yīng)速度慢點(diǎn),但是至少業(yè)務(wù)有可用的系統(tǒng),剩下時(shí)間再去優(yōu)化那剩下的20%。這樣可以幫助我行搶占先機(jī),在與同行業(yè)的競(jìng)爭(zhēng)中取得主動(dòng)。如果等待我們把所有的細(xì)節(jié)都搞清楚再動(dòng)手開(kāi)發(fā),力求完美,那么很可能系統(tǒng)能夠上線的時(shí)候業(yè)務(wù)已經(jīng)不需要了。
數(shù)學(xué)之美,也就是簡(jiǎn)單之美。希望大家能夠喜歡數(shù)學(xué),喜歡數(shù)學(xué)之美。
數(shù)學(xué)之美讀書(shū)心得3
《數(shù)學(xué)之美》,一個(gè)從事多年工作的谷歌研究員眼中的數(shù)學(xué)。令我大飽眼福的是,大學(xué)里面的數(shù)學(xué)知識(shí)竟能如此廣泛運(yùn)用到了計(jì)算機(jī)行業(yè)中。
在語(yǔ)音識(shí)別、翻譯,還有密碼學(xué)領(lǐng)域,有著許多基于概率統(tǒng)計(jì)的模型和思想。當(dāng)然,貝葉斯公式是基礎(chǔ),應(yīng)用到隱含馬爾科夫鏈模型,神經(jīng)網(wǎng)絡(luò)模型。
在搜索中,一些相關(guān)性的計(jì)算,無(wú)不用到了概率的知識(shí)。在新聞分類(lèi)中,用到了一些有關(guān)矩陣特征值、相似對(duì)角化的知識(shí)。當(dāng)然,在圖像處理方面,矩陣變換可謂是無(wú)處不在。另外,在識(shí)別方面,有一些通信模型,涉及到了信道、誤碼率、信息熵。
最近剛開(kāi)學(xué)也沒(méi)什么事,所以就想隨便找?guī)妆緯?shū)看一下,但最好別是那種太艱深晦澀的書(shū)。8月份一直到現(xiàn)在,吳軍寫(xiě)的這本12年5月出版的《數(shù)學(xué)之美》一直盤(pán)踞京東、亞馬遜等各大網(wǎng)上商城科技類(lèi)圖書(shū)的榜首,當(dāng)然,還有早些時(shí)候出版的《浪潮之巔》也排在很靠前的位置。心想市場(chǎng)的力量應(yīng)該能幫我挑出好書(shū)吧,于是就從圖書(shū)館借了一本來(lái),一直到今天晚上把它給看完了。
因此想寫(xiě)一點(diǎn)東西來(lái)總結(jié)、反思一下,反正剛開(kāi)完班會(huì)也沒(méi)什么事干。
寫(xiě)在前面的建議:如果你不討厭數(shù)學(xué)的話,強(qiáng)烈推薦這本書(shū),網(wǎng)上也可以下到電子版,不過(guò)閱讀感覺(jué)上還是很不一樣的。
廢話就不多說(shuō)了,《數(shù)學(xué)之美》其實(shí)是一本科普類(lèi)的讀物,所面向的是接受過(guò)普通高等教育的人,完全不需要在特定領(lǐng)域有很深的造詣就可以看懂,大概懂一點(diǎn)線性代數(shù)、概率統(tǒng)計(jì)、組合數(shù)學(xué)、信息論、計(jì)算機(jī)算法、模式識(shí)別最好(雖然列舉了這么多,其實(shí)有些不懂也沒(méi)關(guān)系……),所以尤其適合信科的人看。內(nèi)容大部分是和人工智能、計(jì)算機(jī)相關(guān)的,這并非我所學(xué)的專(zhuān)業(yè),但作者比較擅長(zhǎng)將看似復(fù)雜的原理用簡(jiǎn)明的語(yǔ)言表達(dá)出來(lái),所以可讀性還是很好的。
吳軍是清華大學(xué)畢業(yè)的,之前任職于Google,后來(lái)到了騰訊,這些文章都是發(fā)表在Google黑板報(bào)上的,后來(lái)經(jīng)過(guò)了重寫(xiě),所以網(wǎng)上下載的和書(shū)本內(nèi)容有所差異。由于吳軍本人是研究自然語(yǔ)言處理和語(yǔ)音識(shí)別的,所以統(tǒng)計(jì)語(yǔ)言模型的東西可能會(huì)多一點(diǎn),不過(guò)我覺(jué)得這絲毫不妨礙全書(shū)數(shù)學(xué)之美的展現(xiàn)……感覺(jué)收獲還是挺多的,知識(shí)上的有一些,但更多還是思維方式上的。作者舉了很多例子試圖讓人明白很多看似復(fù)雜的高科技背后,基本原理其實(shí)是出乎意料簡(jiǎn)單的(當(dāng)然,必須承認(rèn)第一個(gè)想到這些方法的人還是非常了不起的……)。比如高準(zhǔn)確率的'機(jī)器翻譯,看上去好像是計(jì)算機(jī)能夠理解各國(guó)語(yǔ)言,隱藏在背后的卻是很多具有大學(xué)理科學(xué)歷的人都非常清楚的統(tǒng)計(jì)模型和概率模型;再比如拼音輸入法的數(shù)學(xué)原理,早期的研究主要集中在縮短平均編碼長(zhǎng)度,比如曾經(jīng)流行一時(shí)的五筆輸入法,而現(xiàn)今真正實(shí)用的輸入法卻是有很多信息冗余、編碼長(zhǎng)度比較長(zhǎng)的拼音輸入法,作者從信息論和市場(chǎng)的角度做了簡(jiǎn)單的闡述;又比如新聞的自動(dòng)分類(lèi),許多非IT領(lǐng)域的人可能會(huì)認(rèn)為計(jì)算機(jī)可以讀懂新聞并進(jìn)行分類(lèi),而實(shí)際上只是特征向量的抽取、多維空間中向量夾角的計(jì)算,非常非常簡(jiǎn)單,但凡學(xué)過(guò)一點(diǎn)線性代數(shù)的人絕對(duì)是一看就懂的……當(dāng)然,完美的實(shí)現(xiàn)還需要考慮很多細(xì)節(jié)和現(xiàn)實(shí)的情況,但這并不是這本書(shū)所關(guān)注的地方,數(shù)學(xué)之美在于其簡(jiǎn)潔而不是繁瑣。
除了對(duì)于具體信息技術(shù)的剖析之外,作者還花了很大篇幅來(lái)講一些杰出人士的成長(zhǎng)過(guò)程,特別是把這些人的成長(zhǎng)經(jīng)歷和中國(guó)學(xué)生的成長(zhǎng)經(jīng)歷作對(duì)比。雖然作者并沒(méi)有明說(shuō),但字里行間多少流露出對(duì)于中國(guó)高等教育以及很多中國(guó)企業(yè)的批評(píng),一是教育的功利性,缺乏寬松的獨(dú)立思考的環(huán)境,即使學(xué)了一堆理論也難有用武之地,自然也就缺乏創(chuàng)新性的成果;二是中國(guó)企業(yè)的短視,大部分都不舍得在新框架開(kāi)發(fā)上投資,而是坐享學(xué)術(shù)界和國(guó)外企業(yè)的研究成果。
總結(jié)一下呢,《數(shù)學(xué)之美》事實(shí)上不能帶給你編程能力的提升,也沒(méi)法讓人的數(shù)學(xué)水平有顯著的提升,但它在很大程度上讓你跳出教科書(shū)式的繁瑣細(xì)節(jié)的束縛,能夠從更宏觀的角度來(lái)思考信息世界背后的數(shù)學(xué)引擎的運(yùn)行原理,讓人明白看似很高級(jí)、復(fù)雜的東西背后其實(shí)并不如我們所想象的那樣復(fù)雜,而我們所學(xué)的“枯燥”的數(shù)學(xué)真的可以“四兩撥千斤”,改變億萬(wàn)人的生活。
數(shù)學(xué)之美讀書(shū)心得4
我第一次看到這本書(shū)是在兩三年前,當(dāng)時(shí)看的是電子書(shū),雖然沒(méi)太仔細(xì)看,但是第一次近距離了解到這些互聯(lián)網(wǎng)應(yīng)用背后的數(shù)學(xué)原理。
前段時(shí)間,我在同學(xué)的桌上看到了《數(shù)學(xué)之美》的紙質(zhì)書(shū),就向他借來(lái)讀。雖說(shuō)"書(shū)非借不能讀也",但實(shí)際上借了書(shū)也沒(méi)能好好讀,斷斷續(xù)續(xù)讀了有一個(gè)月才讀完。
由于工作背景的緣故,吳軍博士的這本書(shū)主要內(nèi)容集中在語(yǔ)言識(shí)別和搜索領(lǐng)域,但這絲毫不妨礙它確實(shí)反映了很多共同的道理。我總結(jié)了幾點(diǎn)供大家探討。
1. 簡(jiǎn)單就是美
歐拉公式,最美的數(shù)據(jù)公式之一。
雖然在大家的眼里,數(shù)學(xué)是一門(mén)深?yuàn)W的學(xué)科,但是很多數(shù)學(xué)規(guī)律卻能用非常簡(jiǎn)單的公式表示出來(lái)。我想"簡(jiǎn)單卻非常有用"或許就是數(shù)學(xué)之美的內(nèi)涵吧。
書(shū)中作者給了很多"簡(jiǎn)單卻非常有用"的例子,比如簡(jiǎn)單的布爾代數(shù)就是搜索引擎的數(shù)學(xué)基礎(chǔ);比如助Google一舉逆襲成為搜索老大pagerank算法就是矩陣乘法迭代結(jié)合TF-IDF公式;地圖導(dǎo)航搜索就是簡(jiǎn)單的動(dòng)態(tài)規(guī)劃;統(tǒng)計(jì)語(yǔ)言模型可以輕松解決看似難度、復(fù)雜度超高機(jī)器翻譯、語(yǔ)音識(shí)別。
數(shù)學(xué)的精彩之處就在于簡(jiǎn)單的模型可以干大事。從本質(zhì)上講,數(shù)學(xué)的思維方法就是抽象與簡(jiǎn)化。簡(jiǎn)單的模型怎么來(lái)?靠的是先抽象,后簡(jiǎn)化。對(duì)于復(fù)雜的問(wèn)題,往往可以通過(guò)抽象,然后用數(shù)學(xué)模型來(lái)描述它。選擇了合理的模型就成功了一半。但是有了模型,往往模型看著簡(jiǎn)單,但求解比較困難。這就需要合理假設(shè)繼續(xù)簡(jiǎn)化,或者說(shuō)通過(guò)增加合理的假設(shè)條件來(lái)簡(jiǎn)化計(jì)算。以書(shū)上提到的馬爾科夫鏈為例,雖然公式的求解非常困難,但是一旦加上適當(dāng)?shù)募僭O(shè),問(wèn)題就一下子簡(jiǎn)化了非常多。
所以,針對(duì)紛繁蕪雜的現(xiàn)實(shí)情況,我們一定要能時(shí)刻準(zhǔn)備著把復(fù)雜問(wèn)題簡(jiǎn)單化,一定要做到大膽合理假設(shè),盡可能的簡(jiǎn)化問(wèn)題,抓住其主要矛盾,先用很小的代價(jià)解決大部分的問(wèn)題,剩下的部分再分步解決。
2. 透過(guò)現(xiàn)象看本質(zhì)
作者說(shuō)到,技術(shù)分為術(shù)和道兩種,具體的做事方法是術(shù),做事的原理和原則是道。技術(shù)容易學(xué),但也容易落伍,所以追求術(shù)的人一輩子工作很辛苦,只有掌握了道的本質(zhì)和精髓才能永遠(yuǎn)游刃有余。真正做好一件事沒(méi)有捷徑,需要一萬(wàn)小時(shí)的專(zhuān)業(yè)訓(xùn)練和努力。
道是什么?道實(shí)際上就是方向,就是判斷。
我想有些領(lǐng)導(dǎo)之所以成為優(yōu)秀的領(lǐng)導(dǎo),是因?yàn)樗麄冋莆樟说,反而?duì)具體的術(shù)不那么關(guān)注。
舉個(gè)書(shū)上的兩個(gè)例子,都是關(guān)于搜索的:一個(gè)例子是搜索的`本質(zhì)是什么?自動(dòng)下載盡可能多的網(wǎng)頁(yè);建立快速有效的索引;根據(jù)相關(guān)性對(duì)網(wǎng)頁(yè)進(jìn)行公平準(zhǔn)確的排序。另一個(gè)例子是搜索引擎作弊的本質(zhì)是什么?是在網(wǎng)頁(yè)排名信號(hào)中加入了噪聲,因此反作弊的關(guān)鍵是去除噪聲。
所以,我們?cè)诠ぷ鞯臅r(shí)候,要善于理解事物的原理與本質(zhì)。要先回答是什么、為什么?最后才是怎么做。再比如,在學(xué)習(xí)某個(gè)軟件或某項(xiàng)技術(shù)時(shí),就需要先掌握它的工作原理與工作機(jī)制,以便于我們判斷其適用的場(chǎng)景和不適用的場(chǎng)景,而不是先去熟悉怎么用它。
3. 循序漸進(jìn)、逐步演化
書(shū)上對(duì)自然語(yǔ)言處理著墨很多。最初的自然語(yǔ)言處理是基于規(guī)則的句法分析,但是一段時(shí)間過(guò)后,人們發(fā)現(xiàn)句法分析的準(zhǔn)確率很難提升。正當(dāng)句法分析派走投無(wú)路的時(shí)候,統(tǒng)計(jì)語(yǔ)言模型出現(xiàn)了,而且越走越順,很快就把句法分析派遠(yuǎn)遠(yuǎn)拋在了后面。問(wèn)題就來(lái)了,那為什么最開(kāi)始科學(xué)家們不直接研究統(tǒng)計(jì)語(yǔ)言模型?答案當(dāng)然是不能,原因是時(shí)機(jī)還不成熟,因?yàn)榻y(tǒng)計(jì)語(yǔ)言模型所需要基于的大數(shù)據(jù)量的語(yǔ)言庫(kù)還沒(méi)有,大規(guī)模并行計(jì)算的能力還不夠。同樣的,統(tǒng)計(jì)語(yǔ)言模型就是最好的嗎?當(dāng)然是不盡然,科學(xué)家們現(xiàn)在開(kāi)始研究基于深度學(xué)習(xí)的自然語(yǔ)言處理,相信不久的將來(lái),語(yǔ)言識(shí)別、機(jī)器翻譯會(huì)有另外一個(gè)質(zhì)的飛躍。
我們做什么事情都不可能是一蹴而就,一步到位,想畢其功于一役的往往最后的結(jié)局都是失敗的。
對(duì)我們而言,不管是架構(gòu)規(guī)劃也好、系統(tǒng)建設(shè)也好、管理工作也好,更是需要找準(zhǔn)突破口,循序漸進(jìn),逐步演化。當(dāng)然,我們也不能固步自封、墨守成規(guī)。
數(shù)學(xué)之美讀書(shū)心得5
數(shù)學(xué)用在模型上而不是現(xiàn)實(shí)世界中,需要抽象思考出模型,即數(shù)學(xué)對(duì)象是其所做。數(shù)系擴(kuò)充中,復(fù)數(shù)i并沒(méi)有比無(wú)理數(shù)根號(hào)2更特殊的地方,因?yàn)樗鼈冏鳛槌橄蟮臄?shù)學(xué)構(gòu)造,如果充分自然,則必能作為模型找到它們的用途。實(shí)際上正是如此。
數(shù)學(xué)中有個(gè)根本性的重要事實(shí):數(shù)學(xué)論證中的每一步都可以不斷地分解成更小更清晰有據(jù)的子步驟,但是這樣的過(guò)程最終會(huì)終止。原則上,最終會(huì)得到一條非常長(zhǎng)的論證,它以普遍接受的公理開(kāi)始,僅通過(guò)最基本的邏輯原則一步步推進(jìn),最終得到想要求證的結(jié)論。所以,任何關(guān)于數(shù)學(xué)證明有效性的爭(zhēng)論總是能夠解決的。爭(zhēng)論在原則上必然能夠解決這一事實(shí)使數(shù)學(xué)作為一個(gè)學(xué)科是獨(dú)一無(wú)二的。在這里,公理系統(tǒng)的主要問(wèn)題不是真實(shí)性,而是自洽性和有用性,即數(shù)學(xué)證明就是由特定前提能夠得出特定結(jié)論,而不考慮該前提是否正確。
我不清楚這一“根本性的`重要事實(shí)”在現(xiàn)實(shí)中的使用范圍有多大,但由此可以聊一點(diǎn)別的問(wèn)題,F(xiàn)實(shí)中,如果甲對(duì)事情有A觀點(diǎn)(或說(shuō)價(jià)值觀),乙有B觀點(diǎn),并為此爭(zhēng)執(zhí)。有下面幾種情況:
1、在上述的范圍之外,即沒(méi)有定論。
2、有定論,但是雙方都沒(méi)有給出足夠的證據(jù)證明和反駁。
3、有定論,一方給出了足夠的證據(jù)(或者反駁理由),因?yàn)楸磉_(dá)能力導(dǎo)致表述不清晰而沒(méi)有說(shuō)服對(duì)方。
4、有定論,一方給出了足夠的證據(jù)(或者反駁理由),因?yàn)閷?duì)方理解不夠或理解偏差導(dǎo)致沒(méi)有被說(shuō)服。第234條與這幾項(xiàng)有關(guān):知識(shí)量,表達(dá)能力,理解能力,對(duì)外界的認(rèn)知和自我認(rèn)知。其中語(yǔ)言本身的局限性會(huì)一定程度上影響表達(dá)和理解,認(rèn)知能力是一項(xiàng)綜合的要求很高的能力。“評(píng)論”這件事就是個(gè)很合適的例子。如果說(shuō)創(chuàng)造更需要的是才氣,那么評(píng)論更需要的就是能力。但是,無(wú)論雙方是否知道有無(wú)定論,很多情況下需要陳述不少或很多證據(jù)或反駁理由,由第234條可知人與人交流的效率很低,并且可能伴隨一些沖突。若考慮到一些人的利益因素等,交流會(huì)更復(fù)雜。
數(shù)學(xué)之美讀書(shū)心得6
這本書(shū)一共3章,主要介紹了這些數(shù)學(xué)方法:統(tǒng)計(jì)方法、統(tǒng)計(jì)語(yǔ)言模型、中文信息處理、隱含馬爾科夫模型、布爾代數(shù)、圖論、網(wǎng)頁(yè)排名技術(shù)、信息論、動(dòng)態(tài)規(guī)劃、余弦定理、矩陣運(yùn)算、信息指紋、密碼學(xué)、搜索技術(shù)、數(shù)學(xué)模型、最大熵模型、拼音輸入法、貝葉斯網(wǎng)絡(luò)、句法分析、維特比算法、各個(gè)擊破算法等。從第一章開(kāi)始其明了幽默的語(yǔ)言就深深的吸引了我,讓我覺(jué)得如果早一點(diǎn)看這本書(shū),也許數(shù)學(xué)之于我就是另一番天地。
第一章里作者從原始人類(lèi)的通信方式開(kāi)始入手,人類(lèi)最早利用聲音進(jìn)行的通信依賴(lài)于開(kāi)篇給出的"編碼—傳輸—解碼"的基本原理,指出原始人的通信方式和今天的通信方式?jīng)]什么不同,這世界上近現(xiàn)代最普遍的原理大部分都在人類(lèi)發(fā)展的歷史上被無(wú)意識(shí)的'使用著。
第六章信息論給出了信息的度量,它是基于概率的,概率越小,其不確定性越大,信息量就越大。引入信息量就可以消除系統(tǒng)的不確定性,同理自然語(yǔ)言處理的大量問(wèn)題就是找相關(guān)的信息。信息熵的物理含義是對(duì)一個(gè)信息系統(tǒng)不確定性的度量,這一點(diǎn)與熱力學(xué)中的熵概念相同,看似不同的學(xué)科之間也會(huì)有著很強(qiáng)的相似性。事務(wù)之間是存在聯(lián)系的,要學(xué)會(huì)借鑒其他知識(shí)。
這本書(shū)里也能找到不少在學(xué)的課程知識(shí),如大學(xué)專(zhuān)業(yè)課里,數(shù)電總是要比模電簡(jiǎn)單不少,而自然界里大部分的信號(hào)都屬于模擬信號(hào)。所謂模擬信號(hào),是指從時(shí)間和數(shù)值兩種維度上看來(lái)都是連續(xù)變化的信號(hào)。在實(shí)際電路中,模數(shù)轉(zhuǎn)換是一個(gè)很重要的過(guò)程,將預(yù)處理的模擬信號(hào)經(jīng)過(guò)模數(shù)變換為數(shù)字信號(hào),然后進(jìn)行數(shù)字信號(hào)處理。而數(shù)字化處理有很多優(yōu)點(diǎn),比如功能強(qiáng)大、抗干擾能力強(qiáng)、易于傳輸?shù)取?/p>
簡(jiǎn)而言之,如果沒(méi)有數(shù)學(xué),就沒(méi)有數(shù)字信號(hào)處理和傳輸?shù)母拍,而?shù)字信號(hào)傳輸在當(dāng)下大規(guī)模的集成電路里是必不可少的,這是通信成功的基本要求。
作者把生活中遇到的復(fù)雜的問(wèn)題,以簡(jiǎn)單清晰,直觀的模型或者公式展現(xiàn)出來(lái)。我們可能過(guò)于注意生活中的種種奇妙現(xiàn)象,往往忽略了追求其理論邏輯的演繹,而這,也是大部分問(wèn)題的主要根源。
羅素曾經(jīng)說(shuō)過(guò):"數(shù)學(xué),如果正確地看,不但擁有真理,而且也具有至高的美";愛(ài)因斯坦也曾說(shuō)過(guò):"純數(shù)學(xué)使我們能夠發(fā)現(xiàn)概念和聯(lián)系這些概念的規(guī)律,這些概念和規(guī)律給了我們理解自然現(xiàn)象的鑰匙。"數(shù)學(xué)在所有科學(xué)領(lǐng)域起著基礎(chǔ)和根本的作用。"哪里有數(shù),哪里就有美"。在這里,我也想把《數(shù)學(xué)之美》真誠(chéng)推薦給每一位對(duì)自然、科學(xué)、生活有興趣有熱情的朋友,不管你是從事職業(yè),讀一讀它,會(huì)讓你受益良多。
吳軍老師在《數(shù)學(xué)之美》中提到:"這本書(shū)的目的是講道而不是講術(shù)。很多具體的搜索技術(shù)很快會(huì)從獨(dú)門(mén)絕技到普及,再到落伍,追求術(shù)的人一輩子工作很辛苦。只有掌握了搜索的本質(zhì)和精髓才能永遠(yuǎn)游刃有余";氐轿覀?nèi)粘5纳钪校枰獙W(xué)習(xí)的東西、技術(shù)太多太多,如果一味地只為去追技術(shù)的腳步,那么我們也會(huì)很累很累。然而基本的原理卻是沒(méi)有怎么變化的。只見(jiàn)森林,不見(jiàn)樹(shù)木,難免迷失;站在高處向下看,也許我們一直看不到底,但是站在底處卻是可以看見(jiàn)底的。
數(shù)學(xué)之美讀書(shū)心得7
近來(lái),我通過(guò)中國(guó)大學(xué)MOOC的慕課《數(shù)學(xué)建模》獲悉一部叫《牛津通識(shí)讀本》的新出版科普系列。同時(shí)購(gòu)入的有六本——《數(shù)學(xué)》《法律》《佛學(xué)概論》等。由于告知該書(shū)的慕課是數(shù)學(xué)課,我首先閱讀的是《數(shù)學(xué)》。
令我意外的是,本系列的書(shū)每本篇幅都短小精悍得讓人愉悅(英文類(lèi)書(shū)系列名就叫A Very ShortIntroduction)。就這本16開(kāi)大小的《數(shù)學(xué)》中,有實(shí)際內(nèi)容的只100頁(yè)左右,剩下的有數(shù)十多頁(yè)附注/答疑,與及100多頁(yè)的英文原稿(原書(shū)作者高爾斯是英國(guó)學(xué)者)。本書(shū)內(nèi)容質(zhì)量非常高,并未使『西方當(dāng)代學(xué)科科普』這個(gè)標(biāo)簽失色。再考慮到其篇幅如此短小,看來(lái),以后為非理工科班出身的青年們推薦數(shù)學(xué)科普書(shū),就不必只記得伊恩·斯圖爾特與馬丁·加德納了。
雖然這是數(shù)學(xué)科普,但作者可深知讀者心。西方作者所著的數(shù)學(xué)科普,一向都很能熟練地脫公式脫符號(hào)講問(wèn)題。與同類(lèi)書(shū)籍比較之下,本書(shū)還有個(gè)小小的特點(diǎn):其章節(jié)敘述順序,既不硬從數(shù)學(xué)史(人類(lèi)認(rèn)知史)的流程,也不完全順應(yīng)個(gè)體認(rèn)知心理學(xué)(教育學(xué))的.順序。開(kāi)篇破題他選的議題是『數(shù)學(xué)模型』,非數(shù)學(xué)專(zhuān)業(yè)學(xué)生最能適應(yīng)的一種破題點(diǎn);然后第二章緊緊承接主題『模型化』,開(kāi)談『抽象化』。這個(gè)過(guò)程的敘述行云流水。我感覺(jué)作者很懂怎樣說(shuō)該說(shuō)的、省去不必說(shuō)的、跳過(guò)不能說(shuō)的。
第二章《數(shù)與抽象》中,作者在引入復(fù)數(shù)時(shí),首先不能免俗地做了其他科普書(shū)差不多的工作:-1的開(kāi)平方根是復(fù)數(shù)的定義blabla;然后,他將議題轉(zhuǎn)入更接近上游本質(zhì)的、但也許常人可能也會(huì)想過(guò)的問(wèn)題:形式與實(shí)在的關(guān)系。
不是說(shuō)『-1的開(kāi)平方根』是復(fù)數(shù)單位i嗎?但似乎有兩個(gè)數(shù)的平方等于-1啊(也即i與-i),到底哪個(gè)才是正宗的『復(fù)數(shù)單位』?如果說(shuō)i是嘛,那么憑什么-i不是?給我講清楚啊——對(duì)吧?我猜,每個(gè)人在其漫長(zhǎng)的人生中,都曾經(jīng)想問(wèn)過(guò)這類(lèi)問(wèn)題吧:『為嘛數(shù)變量用abc、角變量用αβγ』『為嘛求導(dǎo)符用的是一個(gè)點(diǎn)』『為嘛積分符像條蛇』『為嘛積分式里有個(gè)d』諸如此類(lèi)。這些問(wèn)題并不無(wú)聊也不白癡,只是常人很難給出有意義的回答而已;它們中的每個(gè)往往都蘊(yùn)含著16世紀(jì)數(shù)學(xué)大師們的智慧精華。當(dāng)然,本書(shū)沒(méi)有解答所有這類(lèi)奇離古怪的問(wèn)題(這不是《十萬(wàn)個(gè)為什么》)。在本書(shū)里,作者做的是教授課間做的那種事——隨便跟好奇的學(xué)生聊聊天,證明過(guò)程少說(shuō)了個(gè)『在這個(gè)條件下』待會(huì)再補(bǔ)上。上面提到的『i與-i哪個(gè)才是復(fù)數(shù)單位』這個(gè)議題,這段簡(jiǎn)短的討論,同時(shí)也扮演了下一章《證明》的引子這個(gè)角色。
進(jìn)度到第三章《證明》結(jié)束之后,對(duì)讀者而言,或許就只剩一個(gè)小時(shí)的閱讀時(shí)間而已了。后面的章節(jié),議題越來(lái)越抽象(空間、維度、距離、無(wú)窮等),正要抵達(dá)最有趣的部分(集合論)時(shí),突然話鋒一轉(zhuǎn),談起了與抽象幾乎相對(duì)的另一端:計(jì)算理論與數(shù)論;然后,本書(shū)的主體竟在此突然收官。看來(lái),作者多多少少還保持了清醒,未過(guò)度狂熱,未打算將每個(gè)有趣的命題都灌到讀者腦里。在我看來(lái),那種『X貓X氣三千問(wèn)』的大雜燴式科普其實(shí)是很不人道的。大家和我一樣都讀過(guò)一遍又一遍的七橋問(wèn)題與雪花曲線,沒(méi)必要再來(lái)一次了。這些老生常談的話題,在本書(shū)里各只占了一頁(yè)的篇幅。太好了。
【數(shù)學(xué)之美讀書(shū)心得】相關(guān)文章:
讀書(shū)之美12-08
《數(shù)學(xué)之美》讀書(shū)筆記(精選10篇)06-14
《數(shù)學(xué)之美》讀書(shū)心得10-07
人之美,文之美散文10-06
校園之美07-10
和諧之美11-20
競(jìng)技之美12-13
簡(jiǎn)單之美12-11
空白之美12-14